Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy A. Caudy is active.

Publication


Featured researches published by Amy A. Caudy.


Science | 2016

A global genetic interaction network maps a wiring diagram of cellular function

Michael Costanzo; Benjamin VanderSluis; Elizabeth N. Koch; Anastasia Baryshnikova; Carles Pons; Guihong Tan; Wen Wang; Matej Usaj; Julia Hanchard; Susan D. Lee; Vicent Pelechano; Erin B. Styles; Maximilian Billmann; Jolanda van Leeuwen; Nydia Van Dyk; Zhen Yuan Lin; Elena Kuzmin; Justin Nelson; Jeff Piotrowski; Tharan Srikumar; Sondra Bahr; Yiqun Chen; Raamesh Deshpande; Christoph F. Kurat; Sheena C. Li; Zhijian Li; Mojca Mattiazzi Usaj; Hiroki Okada; Natasha Pascoe; Bryan Joseph San Luis

INTRODUCTION Genetic interactions occur when mutations in two or more genes combine to generate an unexpected phenotype. An extreme negative or synthetic lethal genetic interaction occurs when two mutations, neither lethal individually, combine to cause cell death. Conversely, positive genetic interactions occur when two mutations produce a phenotype that is less severe than expected. Genetic interactions identify functional relationships between genes and can be harnessed for biological discovery and therapeutic target identification. They may also explain a considerable component of the undiscovered genetics associated with human diseases. Here, we describe construction and analysis of a comprehensive genetic interaction network for a eukaryotic cell. RATIONALE Genome sequencing projects are providing an unprecedented view of genetic variation. However, our ability to interpret genetic information to predict inherited phenotypes remains limited, in large part due to the extensive buffering of genomes, making most individual eukaryotic genes dispensable for life. To explore the extent to which genetic interactions reveal cellular function and contribute to complex phenotypes, and to discover the general principles of genetic networks, we used automated yeast genetics to construct a global genetic interaction network. RESULTS We tested most of the ~6000 genes in the yeast Saccharomyces cerevisiae for all possible pairwise genetic interactions, identifying nearly 1 million interactions, including ~550,000 negative and ~350,000 positive interactions, spanning ~90% of all yeast genes. Essential genes were network hubs, displaying five times as many interactions as nonessential genes. The set of genetic interactions or the genetic interaction profile for a gene provides a quantitative measure of function, and a global network based on genetic interaction profile similarity revealed a hierarchy of modules reflecting the functional architecture of a cell. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections associated with defects in cell cycle progression or cellular proteostasis. Importantly, the global network illustrates how coherent sets of negative or positive genetic interactions connect protein complex and pathways to map a functional wiring diagram of the cell. CONCLUSION A global genetic interaction network highlights the functional organization of a cell and provides a resource for predicting gene and pathway function. This network emphasizes the prevalence of genetic interactions and their potential to compound phenotypes associated with single mutations. Negative genetic interactions tend to connect functionally related genes and thus may be predicted using alternative functional information. Although less functionally informative, positive interactions may provide insights into general mechanisms of genetic suppression or resiliency. We anticipate that the ordered topology of the global genetic network, in which genetic interactions connect coherently within and between protein complexes and pathways, may be exploited to decipher genotype-to-phenotype relationships. A global network of genetic interaction profile similarities. (Left) Genes with similar genetic interaction profiles are connected in a global network, such that genes exhibiting more similar profiles are located closer to each other, whereas genes with less similar profiles are positioned farther apart. (Right) Spatial analysis of functional enrichment was used to identify and color network regions enriched for similar Gene Ontology bioprocess terms. We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell.


Journal of Cell Biology | 2014

Uniform nomenclature for the mitochondrial contact site and cristae organizing system

Nikolaus Pfanner; Martin van der Laan; Paolo Amati; Roderick A. Capaldi; Amy A. Caudy; Agnieszka Chacinska; Manjula Darshi; Markus Deckers; Suzanne Hoppins; Tateo Icho; Stefan Jakobs; Jianguo Ji; Vera Kozjak-Pavlovic; Chris Meisinger; Paul R. Odgren; Sang Ki Park; Peter Rehling; Andreas S. Reichert; M. Saeed Sheikh; Susan S. Taylor; Nobuo Tsuchida; Alexander M. van der Bliek; Ida J. van der Klei; Jonathan S. Weissman; Benedikt Westermann; Jiping Zha; Walter Neupert; Jodi Nunnari

The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex “mitochondrial contact site and cristae organizing system” and its subunits Mic10 to Mic60.


Cell | 2014

Interspecies Systems Biology Uncovers Metabolites Affecting C. elegans Gene Expression and Life History Traits

Emma Watson; Lesley T. MacNeil; Ashlyn D. Ritter; L. Safak Yilmaz; Adam P. Rosebrock; Amy A. Caudy; Albertha J. M. Walhout

Diet greatly influences gene expression and physiology. In mammals, elucidating the effects and mechanisms of individual nutrients is challenging due to the complexity of both the animal and its diet. Here, we used an interspecies systems biology approach with Caenorhabditis elegans and two of its bacterial diets, Escherichia coli and Comamonas aquatica, to identify metabolites that affect the animals gene expression and physiology. We identify vitamin B12 as the major dilutable metabolite provided by Comamonas aq. that regulates gene expression, accelerates development, and reduces fertility but does not affect lifespan. We find that vitamin B12 has a dual role in the animal: it affects development and fertility via the methionine/S-Adenosylmethionine (SAM) cycle and breaks down the short-chain fatty acid propionic acid, preventing its toxic buildup. Our interspecies systems biology approach provides a paradigm for understanding complex interactions between diet and physiology.


Molecular Systems Biology | 2014

Nucleotide degradation and ribose salvage in yeast

Yi-Fan Xu; Fabien Letisse; Farnaz Absalan; Wenyun Lu; Ekaterina Kuznetsova; Greg Brown; Amy A. Caudy; Alexander F. Yakunin; James R. Broach; Joshua D. Rabinowitz

Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose‐derived carbon accumulates as sedoheptulose‐7‐phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolases other substrate, glyceraldehyde‐3‐phosphate. Oxidative stress increases glyceraldehyde‐3‐phosphate, resulting in rapid consumption of sedoheptulose‐7‐phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.


Bioinformatics | 2009

The impact of incomplete knowledge on evaluation

Curtis Huttenhower; Matthew A. Hibbs; Chad L. Myers; Amy A. Caudy; David C. Hess; Olga G. Troyanskaya

MOTIVATIONnRapidly expanding repositories of highly informative genomic data have generated increasing interest in methods for protein function prediction and inference of biological networks. The successful application of supervised machine learning to these tasks requires a gold standard for protein function: a trusted set of correct examples, which can be used to assess performance through cross-validation or other statistical approaches. Since gene annotation is incomplete for even the best studied model organisms, the biological reliability of such evaluations may be called into question.nnnRESULTSnWe address this concern by constructing and analyzing an experimentally based gold standard through comprehensive validation of protein function predictions for mitochondrion biogenesis in Saccharomyces cerevisiae. Specifically, we determine that (i) current machine learning approaches are able to generalize and predict novel biology from an incomplete gold standard and (ii) incomplete functional annotations adversely affect the evaluation of machine learning performance. While computational approaches performed better than predicted in the face of incomplete data, relative comparison of competing approaches-even those employing the same training data-is problematic with a sparse gold standard. Incomplete knowledge causes individual methods performances to be differentially underestimated, resulting in misleading performance evaluations. We provide a benchmark gold standard for yeast mitochondria to complement current databases and an analysis of our experimental results in the hopes of mitigating these effects in future comparative evaluations.nnnAVAILABILITYnThe mitochondrial benchmark gold standard, as well as experimental results and additional data, is available at http://function.princeton.edu/mitochondria.


Analytica Chimica Acta | 2014

Targeted metabolomics in cultured cells and tissues by mass spectrometry: Method development and validation

Anas M. Abdel Rahman; Judy Pawling; Michael Ryczko; Amy A. Caudy; James W. Dennis

Metabolomics is the identification and quantitation of small bio-molecules (metabolites) in biological samples under various environmental and genetic conditions. Mass spectrometry provides the unique opportunity for targeted identification and quantification of known metabolites by selective reaction monitoring (SRM). However, reproducibility of this approach depends on careful consideration of sample preparation, chemical classes, and stability of metabolites to be evaluated. Herein, we introduce and validate a targeted metabolite profiling workflow for cultured cells and tissues by liquid chromatography-triple quadrupole tandem mass spectrometry. The method requires a one-step extraction of water-soluble metabolites and targeted analysis of central metabolites that include glycolysis, amino acids, nucleotides, citric acid cycle, and the hexosamine biosynthetic pathway. The sensitivity, reproducibility and molecular stability of each targeted metabolite were assessed under experimental conditions. Quantitation of metabolites by peak area ratio was linear with a dilution over a 4 fold dynamic range with minimal deviation R(2)=0.98. Inter- and intra-day precision with cells and tissues had an average coefficient of variation <15% for cultured cell lines, and somewhat higher for mouse liver tissues. The method applied in triplicate measurements readily distinguished immortalized cells from malignant cells, as well as mouse littermates based on their hepatic metabolic profiles.


Genome Biology | 2014

Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection

Benjamin VanderSluis; David C. Hess; Colin Pesyna; Elias W. Krumholz; Tahin Syed; Balázs Szappanos; Corey Nislow; Balázs Papp; Olga G. Troyanskaya; Chad L. Myers; Amy A. Caudy

BackgroundGenome-wide sensitivity screens in yeast have been immensely popular following the construction of a collection of deletion mutants of non-essential genes. However, the auxotrophic markers in this collection preclude experiments on minimal growth medium, one of the most informative metabolic environments. Here we present quantitative growth analysis for mutants in all 4,772 non-essential genes from our prototrophic deletion collection across a large set of metabolic conditions.ResultsThe complete collection was grown in environments consisting of one of four possible carbon sources paired with one of seven nitrogen sources, for a total of 28 different well-defined metabolic environments. The relative contributions to mutants fitness of each carbon and nitrogen source were determined using multivariate statistical methods. The mutant profiling recovered known and novel genes specific to the processing of nutrients and accurately predicted functional relationships, especially for metabolic functions. A benchmark of genome-scale metabolic network modeling is also given to demonstrate the level of agreement between current in silico predictions and hitherto unavailable experimental data.ConclusionsThese data address a fundamental deficiency in our understanding of the model eukaryote Saccharomyces cerevisiae and its response to the most basic of environments. While choice of carbon source has the greatest impact on cell growth, specific effects due to nitrogen source and interactions between the nutrients are frequent. We demonstrate utility in characterizing genes of unknown function and illustrate how these data can be integrated with other whole-genome screens to interpret similarities between seemingly diverse perturbation types.


Genome Research | 2014

Heritability and genetic basis of protein level variation in an outbred population

Leopold Parts; Yi-Chun Liu; Manu M. Tekkedil; Lars M. Steinmetz; Amy A. Caudy; Andrew G. Fraser; Charles Boone; Brenda Andrews; Adam P. Rosebrock

The genetic basis of heritable traits has been studied for decades. Although recent mapping efforts have elucidated genetic determinants of transcript levels, mapping of protein abundance has lagged. Here, we analyze levels of 4084 GFP-tagged yeast proteins in the progeny of a cross between a laboratory and a wild strain using flow cytometry and high-content microscopy. The genotype of trans variants contributed little to protein level variation between individual cells but explained >50% of the variance in the populations average protein abundance for half of the GFP fusions tested. To map trans-acting factors responsible, we performed flow sorting and bulk segregant analysis of 25 proteins, finding a median of five protein quantitative trait loci (pQTLs) per GFP fusion. Further, we find that cis-acting variants predominate; the genotype of a gene and its surrounding region had a large effect on protein level six times more frequently than the rest of the genome combined. We present evidence for both shared and independent genetic control of transcript and protein abundance: More than half of the expression QTLs (eQTLs) contribute to changes in protein levels of regulated genes, but several pQTLs do not affect their cognate transcript levels. Allele replacements of genes known to underlie trans eQTL hotspots confirmed the correlation of effects on mRNA and protein levels. This study represents the first genome-scale measurement of genetic contribution to protein levels in single cells and populations, identifies more than a hundred trans pQTLs, and validates the propagation of effects associated with transcript variation to protein abundance.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Drosophila larvae synthesize the putative oncometabolite L-2-hydroxyglutarate during normal developmental growth

Hongde Li; Geetanjali Chawla; Alexander J. Hurlburt; Maria C. Sterrett; Olga Zaslaver; James Cox; Jonathan A. Karty; Adam P. Rosebrock; Amy A. Caudy; Jason M. Tennessen

Significance Oncometabolites are small molecules that promote tumor formation and growth. L-2-hydroxyglutarate (L-2HG) is a putative oncometabolite that is associated with gliomas and renal cell carcinomas, as well as a severe neurometabolic disorder known as L-2-hydroxyglutaric aciduria. However, despite that L-2HG is commonly considered a metabolic waste product, this compound was recently discovered to control immune cell fate, thereby demonstrating that it has endogenous functions in healthy animal cells. Here, we find that the fruit fly, Drosophila melanogaster, also synthesizes high concentrations of L-2HG during normal larval growth. Our discovery establishes the fly as a genetic model for studying this putative oncometabolite in healthy animal tissues. L-2-hydroxyglutarate (L-2HG) has emerged as a putative oncometabolite that is capable of inhibiting enzymes involved in metabolism, chromatin modification, and cell differentiation. However, despite the ability of L-2HG to interfere with a broad range of cellular processes, this molecule is often characterized as a metabolic waste product. Here, we demonstrate that Drosophila larvae use the metabolic conditions established by aerobic glycolysis to both synthesize and accumulate high concentrations of L-2HG during normal developmental growth. A majority of the larval L-2HG pool is derived from glucose and dependent on the Drosophila estrogen-related receptor (dERR), which promotes L-2HG synthesis by up-regulating expression of the Drosophila homolog of lactate dehydrogenase (dLdh). We also show that dLDH is both necessary and sufficient for directly synthesizing L-2HG and the Drosophila homolog of L-2-hydroxyglutarate dehydrogenase (dL2HGDH), which encodes the enzyme that breaks down L-2HG, is required for stage-specific degradation of the L-2HG pool. In addition, dLDH also indirectly promotes L-2HG accumulation via synthesis of lactate, which activates a metabolic feed-forward mechanism that inhibits dL2HGDH activity and stabilizes L-2HG levels. Finally, we use a genetic approach to demonstrate that dLDH and L-2HG influence position effect variegation and DNA methylation, suggesting that this compound serves to coordinate glycolytic flux with epigenetic modifications. Overall, our studies demonstrate that growing animal tissues synthesize L-2HG in a controlled manner, reveal a mechanism that coordinates glucose catabolism with L-2HG synthesis, and establish the fly as a unique model system for studying the endogenous functions of L-2HG during cell growth and proliferation.


Genetics | 2013

A New System for Comparative Functional Genomics of Saccharomyces Yeasts

Amy A. Caudy; Yuanfang Guan; Yue Jia; Christina Hansen; Chris DeSevo; Alicia P. Hayes; Joy Agee; Juan R. Alvarez-Dominguez; Hugo Arellano; Daniel R. Barrett; Cynthia Bauerle; Namita Bisaria; Patrick H. Bradley; J. Scott Breunig; Erin C. Bush; David A. Cappel; Emily J. Capra; Walter Chen; John J. Clore; Peter A. Combs; Christopher D Doucette; Olukunle Demuren; Peter Fellowes; Sam Freeman; Evgeni Frenkel; Daniel Gadala-Maria; Richa Gawande; David J. Glass; Samuel Grossberg; Anita Gupta

Whole-genome sequencing, particularly in fungi, has progressed at a tremendous rate. More difficult, however, is experimental testing of the inferences about gene function that can be drawn from comparative sequence analysis alone. We present a genome-wide functional characterization of a sequenced but experimentally understudied budding yeast, Saccharomyces bayanus var. uvarum (henceforth referred to as S. bayanus), allowing us to map changes over the 20 million years that separate this organism from S. cerevisiae. We first created a suite of genetic tools to facilitate work in S. bayanus. Next, we measured the gene-expression response of S. bayanus to a diverse set of perturbations optimized using a computational approach to cover a diverse array of functionally relevant biological responses. The resulting data set reveals that gene-expression patterns are largely conserved, but significant changes may exist in regulatory networks such as carbohydrate utilization and meiosis. In addition to regulatory changes, our approach identified gene functions that have diverged. The functions of genes in core pathways are highly conserved, but we observed many changes in which genes are involved in osmotic stress, peroxisome biogenesis, and autophagy. A surprising number of genes specific to S. bayanus respond to oxidative stress, suggesting the organism may have evolved under different selection pressures than S. cerevisiae. This work expands the scope of genome-scale evolutionary studies from sequence-based analysis to rapid experimental characterization and could be adopted for functional mapping in any lineage of interest. Furthermore, our detailed characterization of S. bayanus provides a valuable resource for comparative functional genomics studies in yeast.

Collaboration


Dive into the Amy A. Caudy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge