Amy Apprill
Woods Hole Oceanographic Institution
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amy Apprill.
Applied and Environmental Microbiology | 2013
Till Bayer; Matthew J. Neave; Areej Alsheikh-Hussain; Manuel Aranda; Lauren K. Yum; Tracy J. Mincer; Konrad A. Hughen; Amy Apprill; Christian R. Voolstra
ABSTRACT Endozoicomonas bacteria were found highly associated with the coral Stylophora pistillata, and these bacteria are also ubiquitously associated with diverse corals worldwide. Novel Endozoicomonas-specific probes revealed that Endozoicomonas bacteria were abundant in the endodermal tissues of S. pistillata and appear to have an intimate relationship with the coral.
Molecular Ecology | 2007
Amy Apprill; Ruth D. Gates
A detailed understanding of how diversity in endosymbiotic dinoflagellate communities maps onto the physiological range of coral hosts is critical to predicting how coral reef ecosystems will respond to climate change. Species‐level taxonomy of the dinoflagellate genus Symbiodinium has been predominantly examined using the internal transcribed spacer (ITS) region of the nuclear ribosomal array (rDNA ITS2) and downstream screening for dominant types using denaturing gradient gel electrophoresis (DGGE). Here, ITS2 diversity in the communities of Symbiodinium harboured by two Hawaiian coral species was explored using direct sequencing of clone libraries. We resolved sixfold to eightfold greater diversity per coral species than previously reported, the majority of which corresponds to a novel and distinct phylogenetic lineage. We evaluated how these sequences migrate in DGGE and demonstrate that this method does not effectively resolve this diversity. We conclude that the Porites spp. examined here harbour diverse assemblages of novel Symbiodinium types and that cloning and sequencing is an effective methodological approach for resolving the complexity of endosymbiotic dinoflagellate communities harboured by reef corals.
mSystems | 2016
William H. Walters; Embriette R. Hyde; Donna Berg-Lyons; Gail Ackermann; Greg Humphrey; Alma Parada; Jack A. Gilbert; Janet K. Jansson; J. Gregory Caporaso; Jed A. Fuhrman; Amy Apprill; Rob Knight
We continue to uncover a wealth of information connecting microbes in important ways to human and environmental ecology. As our scientific knowledge and technical abilities improve, the tools used for microbiome surveys can be modified to improve the accuracy of our techniques, ensuring that we can continue to identify groundbreaking connections between microbes and the ecosystems they populate, from ice caps to the human body. It is important to confirm that modifications to these tools do not cause new, detrimental biases that would inhibit the field rather than continue to move it forward. We therefore demonstrated that two recently modified primer pairs that target taxonomically discriminatory regions of bacterial and fungal genomic DNA do not introduce new biases when used on a variety of sample types, from soil to human skin. This confirms the utility of these primers for maintaining currently recommended microbiome research techniques as the state of the art. ABSTRACT Designing primers for PCR-based taxonomic surveys that amplify a broad range of phylotypes in varied community samples is a difficult challenge, and the comparability of data sets amplified with varied primers requires attention. Here, we examined the performance of modified 16S rRNA gene and internal transcribed spacer (ITS) primers for archaea/bacteria and fungi, respectively, with nonaquatic samples. We moved primer bar codes to the 5′ end, allowing for a range of different 3′ primer pairings, such as the 515f/926r primer pair, which amplifies variable regions 4 and 5 of the 16S rRNA gene. We additionally demonstrated that modifications to the 515f/806r (variable region 4) 16S primer pair, which improves detection of Thaumarchaeota and clade SAR11 in marine samples, do not degrade performance on taxa already amplified effectively by the original primer set. Alterations to the fungal ITS primers did result in differential but overall improved performance compared to the original primers. In both cases, the improved primers should be widely adopted for amplicon studies. IMPORTANCE We continue to uncover a wealth of information connecting microbes in important ways to human and environmental ecology. As our scientific knowledge and technical abilities improve, the tools used for microbiome surveys can be modified to improve the accuracy of our techniques, ensuring that we can continue to identify groundbreaking connections between microbes and the ecosystems they populate, from ice caps to the human body. It is important to confirm that modifications to these tools do not cause new, detrimental biases that would inhibit the field rather than continue to move it forward. We therefore demonstrated that two recently modified primer pairs that target taxonomically discriminatory regions of bacterial and fungal genomic DNA do not introduce new biases when used on a variety of sample types, from soil to human skin. This confirms the utility of these primers for maintaining currently recommended microbiome research techniques as the state of the art.
The ISME Journal | 2014
Julie Reveillaud; Loı̈s Maignien; A. Murat Eren; Julie A. Huber; Amy Apprill; Mitchell L. Sogin; Ann Vanreusel
Microbial communities have a key role in the physiology of the sponge host, and it is therefore essential to understand the stability and specificity of sponge–symbiont associations. Host-specific bacterial associations spanning large geographic distance are widely acknowledged in sponges. However, the full spectrum of specificity remains unclear. In particular, it is not known whether closely related sponges host similar or very different microbiota over wide bathymetric and geographic gradients, and whether specific associations extend to the rare members of the sponge microbiome. Using the ultra-deep Illumina sequencing technology, we conducted a comparison of sponge bacterial communities in seven closely related Hexadella species with a well-resolved host phylogeny, as well as of a distantly related sponge Mycale. These samples spanned unprecedentedly large bathymetric (15–960 m) gradients and varying European locations. In addition, this study included a bacterial community analysis of the local background seawater for both Mycale and the widespread deep-sea taxa Hexadella cf. dedritifera. We observed a striking diversity of microbes associated with the sponges, spanning 47 bacterial phyla. The data did not reveal any Hexadella microbiota co-speciation pattern, but confirmed sponge-specific and species-specific host–bacteria associations, even within extremely low abundant taxa. Oligotyping analysis also revealed differential enrichment preferences of closely related Nitrospira members in closely related sponges species. Overall, these results demonstrate highly diverse, remarkably specific and stable sponge–bacteria associations that extend to members of the rare biosphere at a very fine phylogenetic scale, over significant geographic and bathymetric gradients.
The ISME Journal | 2009
Amy Apprill; Heather Q. Marlow; Mark Q. Martindale; Michael S. Rappé
Associations between healthy adult reef-building corals and bacteria and archaea have been observed in many coral species, but the initiation of their association is not understood. We investigated the onset of association between microorganisms and Pocillopora meandrina, a coral that vertically seeds its eggs with symbiotic dinoflagellates before spawning. We compared the bacterial communities associated with prespawned oocyte bundles, spawned eggs, and week old planulae using multivariate analyses of terminal restriction fragment length polymorphisms of SSU rRNA genes, which revealed that the composition of bacteria differed between these life stages. Additionally, planulae raised in ambient seawater and seawater filtered to reduce the microbial cell density harbored dissimilar bacterial communities, though SSU rRNA gene clone libraries showed that planulae raised in both treatments were primarily associated with different members of the Roseobacter clade of Alphaproteobacteria. Fluorescent in situ hybridization with an oligonucleotide probe suite targeting all bacteria and one oligonucleotide probe targeting members of the Roseobacter clade was used to localize the bacterial cells. Only planulae greater than 3 days old were observed to contain internalized bacterial cells, and members of the Roseobacter clade were detected in high abundance within planula tissues exposed to the ambient seawater treatment. We conclude that the onset of association between microorganisms and the coral P. meandrina appears to occur through horizontal uptake by planulae older than 79 h, and that uptake is preferential to members of the Roseobacter clade and potentially sensitive to the ambient seawater microbial community.
The ISME Journal | 2017
Matthew J. Neave; Rita Rachmawati; Liping Xun; Craig T. Michell; David G. Bourne; Amy Apprill; Christian R. Voolstra
Reef-building corals are well regarded not only for their obligate association with endosymbiotic algae, but also with prokaryotic symbionts, the specificity of which remains elusive. To identify the central microbial symbionts of corals, their specificity across species and conservation over geographic regions, we sequenced partial SSU ribosomal RNA genes of Bacteria and Archaea from the common corals Stylophora pistillata and Pocillopora verrucosa across 28 reefs within seven major geographical regions. We demonstrate that both corals harbor Endozoicomonas bacteria as their prevalent symbiont. Importantly, catalyzed reporter deposition–fluorescence in situ hybridization (CARD–FISH) with Endozoicomonas-specific probes confirmed their residence as large aggregations deep within coral tissues. Using fine-scale genotyping techniques and single-cell genomics, we demonstrate that P. verrucosa harbors the same Endozoicomonas, whereas S. pistillata associates with geographically distinct genotypes. This specificity may be shaped by the different reproductive strategies of the hosts, potentially uncovering a pattern of symbiont selection that is linked to life history. Spawning corals such as P. verrucosa acquire prokaryotes from the environment. In contrast, brooding corals such as S. pistillata release symbiont-packed planula larvae, which may explain a strong regional signature in their microbiome. Our work contributes to the factors underlying microbiome specificity and adds detail to coral holobiont functioning.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Michael R. Hiscock; Veronica P. Lance; Amy Apprill; Robert R. Bidigare; Zackary I. Johnson; B. Greg Mitchell; Walker O. Smith; Richard T. Barber
It is well established that an increase in iron supply causes an increase in total oceanic primary production in many regions, but the physiological mechanism driving the observed increases has not been clearly identified. The Southern Ocean iron enrichment experiment, an iron fertilization experiment in the waters closest to Antarctica, resulted in a 9-fold increase in chlorophyll (Chl) concentration and a 5-fold increase in integrated primary production. Upon iron addition, the maximum quantum yield of photosynthesis (φm) rapidly doubled, from 0.011 to 0.025 mol C·mol quanta−1. Paradoxically, this increase in light-limited productivity was not accompanied by a significant increase in light-saturated productivity (Pmaxb). Pmaxb, maximum Chl normalized productivity, was 1.34 mg C·mg Chl−1·h−1 outside and 1.49 mg C·mg Chl−1·h−1 inside the iron-enriched patch. The importance of φm as compared with Pmaxb in controlling the biological response to iron addition has vast implications for understanding the ecological response to iron. We show that an iron-driven increase in φm is the proximate physiological mechanism affected by iron addition and can account for most of the increases in primary production. The relative importance of φm over Pmaxb in this iron-fertilized bloom highlights the limitations of often-used primary productivity algorithms that are driven by estimates of Pmaxb but largely ignore variability in φm and light-limited productivity. To use primary productivity models that include variability in iron supply in prediction or forecasting, the variability of light-limited productivity must be resolved.
Applied Microbiology and Biotechnology | 2016
Matthew J. Neave; Amy Apprill; Christine Ferrier-Pagès; Christian R. Voolstra
Endozoicomonas bacteria are emerging as extremely diverse and flexible symbionts of numerous marine hosts inhabiting oceans worldwide. Their hosts range from simple invertebrate species, such as sponges and corals, to complex vertebrates, such as fish. Although widely distributed, the functional role of Endozoicomonas within their host microenvironment is not well understood. In this review, we provide a summary of the currently recognized hosts of Endozoicomonas and their global distribution. Next, the potential functional roles of Endozoicomonas, particularly in light of recent microscopic, genomic, and genetic analyses, are discussed. These analyses suggest that Endozoicomonas typically reside in aggregates within host tissues, have a free-living stage due to their large genome sizes, show signs of host and local adaptation, participate in host-associated protein and carbohydrate transport and cycling, and harbour a high degree of genomic plasticity due to the large proportion of transposable elements residing in their genomes. This review will finish with a discussion on the methodological tools currently employed to study Endozoicomonas and host interactions and review future avenues for studying complex host-microbial symbioses.
Environmental Microbiology | 2013
Amy Apprill; Konrad A. Hughen; Tracy J. Mincer
Cultivation-based studies have demonstrated that yellow-band disease (YBD), a lesion-producing ailment affecting diverse species of coral, is caused by a consortium of Vibrio spp. This study takes the first cultivation-independent approach to examine the whole bacterial community associated with YBD-like lesioned corals. Two species of Fungiidae corals, Ctenactis crassa and Herpolitha limax, displaying YBD-like lesions were examined across diverse reefs throughout the Red Sea. Using a pyrosequencing approach targeting the V1-V3 regions of the SSU rRNA gene, no major differences in bacterial community composition or diversity were identified between healthy and lesioned corals of either species. Indicator species analysis did not find Vibrio significantly associated with the lesioned corals. However, operational taxonomic units belonging to the Ruegeria genus of Alphaproteobacteria and NS9 marine group of Flavobacteria were significantly associated with the lesioned corals. The most striking trend of this dataset was that reef location was found to be the most significant influence on the coral-bacterial community. It is possible that more pronounced lesion-specific bacterial signatures might have been concealed by the strong influence of environmental conditions on coral-bacteria. Overall, this study demonstrates inconsistencies between cultivation-independent and cultivation-based studies regarding the role of specific bacteria in coral diseases.
PLOS ONE | 2014
Amy Apprill; Jooke Robbins; A. Murat Eren; Adam A. Pack; Julie Reveillaud; David K. Mattila; Michael J. Moore; Misty E. Niemeyer; Kathleen M. T. Moore; Tracy J. Mincer
Microbes are now well regarded for their important role in mammalian health. The microbiology of skin – a unique interface between the host and environment - is a major research focus in human health and skin disorders, but is less explored in other mammals. Here, we report on a cross-population study of the skin-associated bacterial community of humpback whales (Megaptera novaeangliae), and examine the potential for a core bacterial community and its variability with host (endogenous) or geographic/environmental (exogenous) specific factors. Skin biopsies or freshly sloughed skin from 56 individuals were sampled from populations in the North Atlantic, North Pacific and South Pacific oceans and bacteria were characterized using 454 pyrosequencing of SSU rRNA genes. Phylogenetic and statistical analyses revealed the ubiquity and abundance of bacteria belonging to the Flavobacteria genus Tenacibaculum and the Gammaproteobacteria genus Psychrobacter across the whale populations. Scanning electron microscopy of skin indicated that microbial cells colonize the skin surface. Despite the ubiquity of Tenacibaculum and Psychrobater spp., the relative composition of the skin-bacterial community differed significantly by geographic area as well as metabolic state of the animals (feeding versus starving during migration and breeding), suggesting that both exogenous and endogenous factors may play a role in influencing the skin-bacteria. Further, characteristics of the skin bacterial community from these free-swimming individuals were assembled and compared to two entangled and three dead individuals, revealing a decrease in the central or core bacterial community members (Tenacibaculum and Psychrobater spp.), as well as the emergence of potential pathogens in the latter cases. This is the first discovery of a cross-population, shared skin bacterial community. This research suggests that the skin bacteria may be connected to humpback health and immunity and could possibly serve as a useful index for health and skin disorder monitoring of threatened and endangered marine mammals.