Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tracy J. Mincer is active.

Publication


Featured researches published by Tracy J. Mincer.


Nature | 2009

Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity

Benjamin A. S. Van Mooy; Helen F. Fredricks; Byron E. Pedler; Sonya T. Dyhrman; David M. Karl; Michal Koblizek; Michael W. Lomas; Tracy J. Mincer; Lisa R. Moore; Thierry Moutin; Michael S. Rappé; Eric A. Webb

Phosphorus is an obligate requirement for the growth of all organisms; major biochemical reservoirs of phosphorus in marine plankton include nucleic acids and phospholipids. However, eukaryotic phytoplankton and cyanobacteria (that is, ‘phytoplankton’ collectively) have the ability to decrease their cellular phosphorus content when phosphorus in their environment is scarce. The biochemical mechanisms that allow phytoplankton to limit their phosphorus demand and still maintain growth are largely unknown. Here we show that phytoplankton, in regions of oligotrophic ocean where phosphate is scarce, reduce their cellular phosphorus requirements by substituting non-phosphorus membrane lipids for phospholipids. In the Sargasso Sea, where phosphate concentrations were less than 10 nmol l-1, we found that only 1.3 ± 0.6% of phosphate uptake was used for phospholipid synthesis; in contrast, in the South Pacific subtropical gyre, where phosphate was greater than 100 nmol l-1, plankton used 17 ± 6% (ref. 6). Examination of the planktonic membrane lipids at these two locations showed that classes of sulphur- and nitrogen-containing membrane lipids, which are devoid of phosphorus, were more abundant in the Sargasso Sea than in the South Pacific. Furthermore, these non-phosphorus, ‘substitute lipids’ were dominant in phosphorus-limited cultures of all of the phytoplankton species we examined. In contrast, the marine heterotrophic bacteria we examined contained no substitute lipids and only phospholipids. Thus heterotrophic bacteria, which compete with phytoplankton for nutrients in oligotrophic regions like the Sargasso Sea, appear to have a biochemical phosphorus requirement that phytoplankton avoid by using substitute lipids. Our results suggest that phospholipid substitutions are fundamental biochemical mechanisms that allow phytoplankton to maintain growth in the face of phosphorus limitation.


Applied and Environmental Microbiology | 2002

Widespread and Persistent Populations of a Major New Marine Actinomycete Taxon in Ocean Sediments

Tracy J. Mincer; Paul R. Jensen; Christopher A. Kauffman; William Fenical

ABSTRACT A major taxon of obligate marine bacteria within the order Actinomycetales has been discovered from ocean sediments. Populations of these bacteria (designated MAR 1) are persistent and widespread, spanning at least three distinct ocean systems. In this study, 212 actinomycete isolates possessing MAR 1 morphologies were examined and all but two displayed an obligate requirement of seawater for growth. Forty-five of these isolates, representing all observed seawater-requiring morphotypes, were partially sequenced and found to share characteristic small-subunit rRNA signature nucleotides between positions 207 and 468 (Escherichia coli numbering). Phylogenetic characterization of seven representative isolates based on almost complete sequences of genes encoding 16S rRNA (16S ribosomal DNA) yielded a monophyletic clade within the family Micromonosporaceae and suggests novelty at the genus level. This is the first evidence for the existence of widespread populations of obligate marine actinomycetes. Organic extracts from cultured members of this new group exhibit remarkable biological activity, suggesting that they represent a prolific resource for biotechnological applications.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2005

Marine actinomycete diversity and natural product discovery

Paul R. Jensen; Tracy J. Mincer; Philip G. Williams; William Fenical

Microbial natural products remain an important resource for drug discovery yet the microorganisms inhabiting the world’s oceans have largely been overlooked in this regard. The recent discovery of novel secondary metabolites from taxonomically unique populations of marine actinomycetes suggests that these bacteria add an important new dimension to microbial natural product research. Continued efforts to characterize marine actinomycete diversity and how adaptations to the marine environment affect secondary metabolite production will create a better understanding of the potential utility of these bacteria as a source of useful products for biotechnology.


Nature | 2006

Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea

Niels-Ulrik Frigaard; Asuncion Martinez; Tracy J. Mincer; Edward F. DeLong

Planktonic Bacteria, Archaea and Eukarya reside and compete in the oceans photic zone under the pervasive influence of light. Bacteria in this environment were recently shown to contain photoproteins called proteorhodopsins, thought to contribute to cellular energy metabolism by catalysing light-driven proton translocation across the cell membrane. So far, proteorhodopsin genes have been well documented only in proteobacteria and a few other bacterial groups. Here we report the presence and distribution of proteorhodopsin genes in Archaea affiliated with the order Thermoplasmatales, in the oceans upper water column. The genomic context and phylogenetic relationships of the archaeal and proteobacterial proteorhodopsins indicate its probable lateral transfer between planktonic Bacteria and Archaea. About 10% of the euryarchaeotes in the photic zone contained the proteorhodopsin gene adjacent to their small-subunit ribosomal RNA. The archaeal proteorhodopsins were also found in other genomic regions, in the same or in different microbial lineages. Although euryarchaeotes were distributed throughout the water column, their proteorhodopsins were found only in the photic zone. The cosmopolitan phylogenetic distribution of proteorhodopsins reflects their significant light-dependent fitness contributions, which drive the photoproteins lateral acquisition and retention, but constrain its dispersal to the photic zone.


Science | 2012

Ecological Populations of Bacteria Act as Socially Cohesive Units of Antibiotic Production and Resistance

Otto X. Cordero; Hans Wildschutte; Benjamin C. Kirkup; Sarah Proehl; Lynn Ngo; Fatima Hussain; Frédérique Le Roux; Tracy J. Mincer; Martin F. Polz

Toxic Neighborhood Bacterial populations are often considered to be driven by gene-centric, selfish dynamics. Superficially, antibiotic production fits this picture as individuals can gain most benefit by inhibiting or killing close relatives with high niche overlap. Contrary to that notion, Cordero et al. (p. 1228; see the Perspective by Morlon) show that bacteria in the wild form social units in which antibiotic production and resistance leads to cooperation within, and antagonism between, populations. A combination of high-throughput interaction screening, molecular genetics, and genomics revealed that antibiotics are produced by only a few members of each population, while all other members are resistant. In the past, lack of knowledge of the ecological structure of microbial populations has led to interpretations of antibiotic production and resistance as being largely driven by short-lived, cyclic invasions of populations by antibiotic-producing resistant bacteria. This work shows that structured, socially cohesive bacterial populations exist in the wild and form organizational patterns similar to those of animal and plant populations. Natural antibiotics enforce competition between, rather than within, bacterial populations. In animals and plants, social structure can reduce conflict within populations and bias aggression toward competing populations; however, for bacteria in the wild it remains unknown whether such population-level organization exists. Here, we show that environmental bacteria are organized into socially cohesive units in which antagonism occurs between rather than within ecologically defined populations. By screening approximately 35,000 possible mutual interactions among Vibrionaceae isolates from the ocean, we show that genotypic clusters known to have cohesive habitat association also act as units in terms of antibiotic production and resistance. Genetic analyses show that within populations, broad-range antibiotics are produced by few genotypes, whereas all others are resistant, suggesting cooperation between conspecifics. Natural antibiotics may thus mediate competition between populations rather than solely increase the success of individuals.


Applied and Environmental Microbiology | 2013

The Microbiome of the Red Sea Coral Stylophora pistillata Is Dominated by Tissue-Associated Endozoicomonas Bacteria

Till Bayer; Matthew J. Neave; Areej Alsheikh-Hussain; Manuel Aranda; Lauren K. Yum; Tracy J. Mincer; Konrad A. Hughen; Amy Apprill; Christian R. Voolstra

ABSTRACT Endozoicomonas bacteria were found highly associated with the coral Stylophora pistillata, and these bacteria are also ubiquitously associated with diverse corals worldwide. Novel Endozoicomonas-specific probes revealed that Endozoicomonas bacteria were abundant in the endodermal tissues of S. pistillata and appear to have an intimate relationship with the coral.


Applied and Environmental Microbiology | 2005

Culture-Dependent and Culture-Independent Diversity within the Obligate Marine Actinomycete Genus Salinispora

Tracy J. Mincer; William Fenical; Paul R. Jensen

ABSTRACT Salinispora is the first obligate marine genus within the order Actinomycetales and a productive source of biologically active secondary metabolites. Despite a worldwide, tropical or subtropical distribution in marine sediments, only two Salinispora species have thus far been cultivated, suggesting limited species-level diversity. To further explore Salinispora diversity and distributions, the phylogenetic diversity of more than 350 strains isolated from sediments collected around the Bahamas was examined, including strains cultured using new enrichment methods. A culture-independent method, using a Salinispora-specific seminested PCR technique, was used to detect Salinispora from environmental DNA and estimate diversity. Overall, the 16S rRNA gene sequence diversity of cultured strains agreed well with that detected in the environmental clone libraries. Despite extensive effort, no new species level diversity was detected, and 97% of the 105 strains examined by restriction fragment length polymorphism belonged to one phylotype (S. arenicola). New intraspecific diversity was detected in the libraries, including an abundant new phylotype that has yet to be cultured, and a new depth record of 1,100 m was established for the genus. PCR-introduced error, primarily from Taq polymerase, significantly increased clone library sequence diversity and, if not masked from the analyses, would have led to an overestimation of total diversity. An environmental DNA extraction method specific for vegetative cells provided evidence for active actinomycete growth in marine sediments while indicating that a majority of sediment samples contained predominantly Salinispora spores at concentrations that could not be detected in environmental clone libraries. Challenges involved with the direct sequence-based detection of spore-forming microorganisms in environmental samples are discussed.


The ISME Journal | 2012

Quorum sensing control of phosphorus acquisition in Trichodesmium consortia

Benjamin A. S. Van Mooy; Laura R. Hmelo; Laura E Sofen; Shawn R. Campagna; Amanda L. May; Sonya T. Dyhrman; Abigail Heithoff; Eric A. Webb; Lily Momper; Tracy J. Mincer

Colonies of the cyanobacterium Trichodesmium are abundant in the oligotrophic ocean, and through their ability to fix both CO2 and N2, have pivotal roles in the cycling of carbon and nitrogen in these highly nutrient-depleted environments. Trichodesmium colonies host complex consortia of epibiotic heterotrophic bacteria, and yet, the regulation of nutrient acquisition by these epibionts is poorly understood. We present evidence that epibiotic bacteria in Trichodesmium consortia use quorum sensing (QS) to regulate the activity of alkaline phosphatases (APases), enzymes used by epibionts in the acquisition of phosphate from dissolved-organic phosphorus molecules. A class of QS molecules, acylated homoserine lactones (AHLs), were produced by cultivated epibionts, and adding these AHLs to wild Trichodesmium colonies collected at sea led to a consistent doubling of APase activity. By contrast, amendments of (S)-4,5-dihydroxy-2,3-pentanedione (DPD)—the precursor to the autoinducer-2 (AI-2) family of universal interspecies signaling molecules—led to the attenuation of APase activity. In addition, colonies collected at sea were found by high performance liquid chromatography/mass spectrometry to contain both AHLs and AI-2. Both types of molecules turned over rapidly, an observation we ascribe to quorum quenching. Our results reveal a complex chemical interplay among epibionts using AHLs and AI-2 to control access to phosphate in dissolved-organic phosphorus.


Environmental Microbiology Reports | 2011

Possible influence of bacterial quorum sensing on the hydrolysis of sinking particulate organic carbon in marine environments.

Laura R. Hmelo; Tracy J. Mincer; Benjamin A. S. Van Mooy

A central component of the oceans biological carbon pump is the export of sinking, photosynthetically derived, particulate organic carbon (POC). Bacteria colonize these particles and produce enzymes that hydrolyse sinking POC thereby acting as one of the major controls on the biological pump. Here we provide evidence that a bacterial cell-cell communication mechanism, quorum sensing (QS), may influence the activity of hydrolytic enzymes on sinking particles. We collected sinking POC from a site off Vancouver Island, Canada and found that it contained acylated homoserine lactones (AHLs), a suite of well-known bacterial communication molecules. Furthermore, we observed that the addition of exogenous AHLs to incubations containing sinking POC affected the activity of key hydrolytic enzymes involved in POC degradation in some cases. Our results suggest that AHL-based QS could play an important role in regulating the degradation of sinking POC and that variability in AHL-triggered POC hydrolysis is a heretofore unrecognized process that impacts the marine biological carbon pump.


Frontiers in Microbiology | 2013

Microbial diversity and methanogenic activity of Antrim Shale formation waters from recently fractured wells

Cornelia Wuchter; Erin C. Banning; Tracy J. Mincer; Nicholas J. Drenzek; Marco J. L. Coolen

The Antrim Shale in the Michigan Basin is one of the most productive shale gas formations in the U.S., but optimal resource recovery strategies must rely on a thorough understanding of the complex biogeochemical, microbial, and physical interdependencies in this and similar systems. We used Illumina MiSeq 16S rDNA sequencing to analyze the diversity and relative abundance of prokaryotic communities present in Antrim shale formation water of three closely spaced recently fractured gas-producing wells. In addition, the well waters were incubated with a suite of fermentative and methanogenic substrates in an effort to stimulate microbial methane generation. The three wells exhibited substantial differences in their community structure that may arise from their different drilling and fracturing histories. Bacterial sequences greatly outnumbered those of archaea and shared highest similarity to previously described cultures of mesophiles and moderate halophiles within the Firmicutes, Bacteroidetes, and δ- and ε-Proteobacteria. The majority of archaeal sequences shared highest sequence similarity to uncultured euryarchaeotal environmental clones. Some sequences closely related to cultured methylotrophic and hydrogenotrophic methanogens were also present in the initial well water. Incubation with methanol and trimethylamine stimulated methylotrophic methanogens and resulted in the largest increase in methane production in the formation waters, while fermentation triggered by the addition of yeast extract and formate indirectly stimulated hydrogenotrophic methanogens. The addition of sterile powdered shale as a complex natural substrate stimulated the rate of methane production without affecting total methane yields. Depletion of methane indicative of anaerobic methane oxidation (AMO) was observed over the course of incubation with some substrates. This process could constitute a substantial loss of methane in the shale formation.

Collaboration


Dive into the Tracy J. Mincer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Jensen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Apprill

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Benjamin A. S. Van Mooy

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward F. DeLong

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eric A. Webb

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Konrad A. Hughen

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Kristen E. Whalen

Woods Hole Oceanographic Institution

View shared research outputs
Researchain Logo
Decentralizing Knowledge