Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy Christensen is active.

Publication


Featured researches published by Amy Christensen.


The Journal of Neuroscience | 2007

Membrane Estrogen Receptor-α Interactions with Metabotropic Glutamate Receptor 1a Modulate Female Sexual Receptivity in Rats

Phoebe Dewing; Marissa I. Boulware; Kevin Sinchak; Amy Christensen; Paul G. Mermelstein; Paul E. Micevych

In rats, female sexual behavior is regulated by a well defined limbic–hypothalamic circuit that integrates sensory and hormonal information. Estradiol activation of this circuit results in μ-opioid receptor (MOR) internalization in the medial preoptic nucleus, an important step for full expression of sexual receptivity. Estradiol acts through both membrane and intracellular receptors to influence neuronal activity and behavior, yet the mechanism(s) and physiological significance of estradiol-mediated membrane responses in vivo have remained elusive. Recent in vitro evidence found that stimulation of membrane-associated estrogen receptor-α (ERα) led to activation of metabotropic glutamate receptor 1a (mGluR1a). Furthermore, mGluR1a signaling was responsible for the observed downstream effects of estradiol. Here we present data that show that ERα and mGluR1a directly interact to mediate a rapid estradiol-induced activation of MOR in the medial preoptic nucleus, leading to female sexual receptivity. In addition, blockade of mGluR1a in the arcuate nucleus of the hypothalamus resulted in a significant attenuation of estradiol-induced MOR internalization, leading to diminished female sexual behavior. These results link membrane-initiated estradiol actions to neural events modulating behavior, demonstrating the physiological importance of ERα-to-mGluR1a signaling.


The Journal of Neuroscience | 2011

Membrane-initiated estradiol signaling induces spinogenesis required for female sexual receptivity.

Amy Christensen; Phoebe Dewing; Paul E. Micevych

Estrogens have profound actions on the structure of the nervous system during development and in adulthood. One of the signature actions of estradiol is to alter the morphology of neural processes. In the hippocampus, estradiol modulates spines and cellular excitability that affect cognitive behaviors. In the hypothalamus, estradiol increases spine density in mediobasal hypothalamic nuclei that regulate reproduction. The hypothalamic arcuate nucleus (ARH), an important site for modulation of female sexual receptivity, has a sexual dimorphism in dendritic spine density that favors females. In the present study, we used both β-actin immunostaining and Golgi staining to visualize estradiol-induced changes in spine density in Long–Evans rats. Golgi impregnation was used to visualize spine shape, and then β-actin immunoreactivity was used as a semiquantitative measure of spine plasticity since actin forms the core of dendritic spines. At 4 h after estradiol treatment, both β-actin immunofluorescence and filopodial spines were increased (from 70.57 ± 1.09% to 78.01 ± 1.05%, p < 0.05). Disruption of estradiol-induced β-actin polymerization with cytochalasin D attenuated lordosis behavior, indicating the importance of estradiol-mediated spinogenesis for female sexual receptivity (81.43 ± 7.05 to 35.00 ± 11.76, p < 0.05). Deactivation of cofilin, an actin depolymerizing factor is required for spinogenesis. Membrane-initiated estradiol signaling involving the metabotropic glutamate receptor 1a was responsible for the phosphorylation and thereby deactivation of cofilin. These data demonstrate that estradiol-induced spinogenesis in the ARH is an important cellular mechanism for the regulation of female sexual behavior.


Endocrinology | 2008

Protein Kinase C Signaling in the Hypothalamic Arcuate Nucleus Regulates Sexual Receptivity in Female Rats

Phoebe Dewing; Amy Christensen; Galyna Bondar; Paul E. Micevych

Rapid membrane-mediated estradiol signaling regulating sexual receptivity requires the interaction of the estrogen receptor (ER)-alpha and the metabotropic glutamate receptor 1a (mGluR1a). A cell signaling antibody microarray revealed that estradiol activated 42 proteins in the arcuate nucleus of the hypothalamus (ARH). To begin an analysis of various signaling pathways, protein kinase A and protein kinase C (PKC)-theta, whose signaling pathways have been implicated in the estradiol regulation of sexual receptivity, were examined. In the ARH sample, the increase in phospho-protein kinase A could not be confirmed by Western blotting, in either cytosolic or membrane fractions. However, the increase in phosphorylated PKCtheta seen with the pathway array was verified by Western blotting. To study whether rapid estradiol activation of PKC regulates the ARH-medial preoptic nucleus pathway regulating lordosis, mu-opioid receptor (MOR) internalization and lordosis reflex were tested. Blocking PKC in ARH with 2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]3-(1H-indol-3-yl) maleimide significantly attenuated estradiol-induced MOR internalization. Furthermore, disruption of PKC signaling within the ARH at the time of estradiol treatment significantly diminished the lordosis reflex. Moreover, blocking PKC prevented MOR internalization when the circuit was activated by the mGluR1a agonist, (RS)-3,5-dihydroxyphenylglycine. Activation of PKC with phorbol 12, 13-dibutyrate induced MOR internalization, indicating that PKC was a critical step for membrane ERalpha-initiated mGluR1a-mediated cell signaling and phorbol 12, 13-dibutyrate significantly facilitated the lordosis reflex. Together these findings indicate that rapid membrane ERalpha-mGluR1a interactions activate PKCtheta cell signaling, which regulates female sexual receptivity.


Journal of Neuroendocrinology | 2009

Physiology of Membrane Oestrogen Receptor Signalling in Reproduction

Paul E. Micevych; John Kuo; Amy Christensen

The best characterised oestrogen receptors (ERs) that are responsible for membrane‐initiated oestradiol signalling are the classic ERs, ERα and ERβ. When in the nucleus, these proteins are oestradiol activated transcription factors but, when trafficked to the cell membrane, ERα and ERβ rapidly activate protein kinase pathways, alter membrane electrical properties, modulate ion flux and can mediate long‐term effects through gene expression. To initiate cell signalling, membrane ERs transactivate metabotropic glutamate receptors (mGluRs) to stimulate Gq signalling through pathways using PKC and calcium. In this review, we discuss the interaction of membrane ERα with metabotropic glutamate receptor 1a (mGluR1a) to initiate rapid oestradiol cell signalling and its critical roles in female reproduction: sexual behaviour and oestrogen positive feedback of the luteinising hormone (LH) surge. Although long considered to be regulated by the long‐term actions of oestradiol on gene transcription, recent results indicate that membrane oestradiol cell signalling is vital for a full display of sexual receptivity. Similarly, the source of pre‐ovulatory progesterone necessary for initiating the LH surge is hypothalamic astrocytes. Oestradiol rapidly amplifies progesterone synthesis through the release of intracellular calcium stores. The ERα‐mGluR1a interaction is necessary for critical calcium flux. These two examples provide support for the hypothesis that membrane ERs are not themselves G‐protein receptors; rather, they use mGluRs to signal.


Frontiers in Neuroendocrinology | 2012

Membrane-initiated estradiol actions mediate structural plasticity and reproduction.

Paul E. Micevych; Amy Christensen

Over the years, our ideas about estrogen signaling have greatly expanded. In addition to estradiol having direct nuclear actions that mediate transcription and translation, more recent experiments have demonstrated membrane-initiated signaling. Both direct nuclear and estradiol membrane signaling can be mediated by the classical estrogen receptors, ERα and ERβ, which are two of the numerous putative membrane estrogen receptors. Thus far, however, only ERα has been shown to play a prominent role in regulating female reproduction and sexual behavior. Because ERα is a ligand-gated transcription factor and not a typical membrane receptor, trafficking to the cell membrane requires post-translational modifications. Two necessary modifications are palmitoylation and association with caveolins, a family of scaffolding proteins. In addition to their role in trafficking, caveolin proteins also serve to determine ERα interactions with metabotropic glutamate receptors (mGluRs). It is through these complexes that ERα, which cannot by itself activate G proteins, is able to initiate intracellular signaling. Various combinations of ERα-mGluR interactions have been demonstrated throughout the nervous system from hippocampus to striatum to hypothalamus to dorsal root ganglion (DRG) in both neurons and astrocytes. These combinations of ER and mGluR allow estradiol to have both facilitative and inhibitory actions in neurons. In hypothalamic astrocytes, the estradiol-mediated release of intracellular calcium stores regulating neurosteroid synthesis requires ERα-mGluR1a interaction. In terms of estradiol regulation of female sexual receptivity, activation of ERα-mGluR1a signaling complex leads to the release of neurotransmitters and alteration of neuronal morphology. This review will examine estradiol membrane signaling (EMS) activating a limbic-hypothalamic lordosis regulating circuit, which involves ERα trafficking, internalization, and modifications of neuronal morphology in a circuit that underlies female sexual receptivity.


Endocrinology | 2012

CAV1 siRNA Reduces Membrane Estrogen Receptor-α Levels and Attenuates Sexual Receptivity

Amy Christensen; Paul E. Micevych

Although classic estrogen receptors (ER) have been proposed to mediate estradiol signaling, it has been relatively recently that mechanisms of trafficking these receptors have been elucidated. ERα is palmitoylated and associates with caveolin proteins to be targeted to the cell membrane. Caveolins are scaffold proteins that not only traffic ERα to the membrane but also are involved in establishing metabotropic glutamate receptor interactions that are necessary for activating G protein signaling. To demonstrate the role of caveolin proteins in regulating an estradiol-dependent behavior, sexual receptivity, we used small interfering RNA to knock down caveolin-1 (CAV1) expression in the arcuate nucleus of the hypothalamus. In CAV1 knockdown rats, membrane, but not intracellular levels of ERα, were significantly reduced. As expected, estrogenic stimulation of the arcuate nucleus of the hypothalamus to medial preoptic nucleus projection was abrogated in CAV1 knockdown rats, indicating that the membrane-initiated activation of this circuit was compromised. Moreover, estradiol-induced lordosis behavior that is dependent on activation of μ-opioid receptors in the medial preoptic nucleus was also significantly reduced. Thus, CAV1-mediated ERα trafficking to the cell membrane is required for estradiol activation of circuits underlying female sexual receptivity.


Neurobiology of Aging | 2016

The APOE4 allele shows opposite sex bias in microbleeds and Alzheimer's disease of humans and mice

Mafalda Cacciottolo; Amy Christensen; Alexandra Moser; Christian J. Pike; Conor Smith; Mary Jo LaDu; Patrick M. Sullivan; Todd E. Morgan; Egor Dolzhenko; Andreas Charidimou; Lars Olof Wahlund; Maria Kristofferson Wiberg; Sara Shams; Gloria C. Chiang; Caleb E. Finch

The apolipoprotein APOE4 allele confers greater risk of Alzheimers disease (AD) for women than men, in conjunction with greater clinical deficits per unit of AD neuropathology (plaques, tangles). Cerebral microbleeds, which contribute to cognitive dysfunctions during AD, also show APOE4 excess, but sex-APOE allele interactions are not described. We report that elderly men diagnosed for mild cognitive impairment and AD showed a higher risk of cerebral cortex microbleeds with APOE4 allele dose effect in 2 clinical cohorts (ADNI and KIDS). Sex-APOE interactions were further analyzed in EFAD mice carrying human APOE alleles and familial AD genes (5XFAD (+/-) /human APOE(+/+)). At 7 months, E4FAD mice had cerebral cortex microbleeds with female excess, in contrast to humans. Cerebral amyloid angiopathy, plaques, and soluble Aβ also showed female excess. Both the cerebral microbleeds and cerebral amyloid angiopathy increased in proportion to individual Aβ load. In humans, the opposite sex bias of APOE4 allele for microbleeds versus the plaques and tangles is the first example of organ-specific, sex-linked APOE allele effects, and further shows AD as a uniquely human condition.


Neuroendocrinology | 2013

A Novel Membrane Estrogen Receptor Activated by STX Induces Female Sexual Receptivity through an Interaction with mGluR1a.

Amy Christensen; Paul E. Micevych

Membrane initiated estradiol signaling has been shown to be vital for multiple physiological processes. Several receptors have been proposed to mediate the actions of estradiol at the membrane. Here, we examined the ability of STX, an agonist of a novel putative membrane estrogen receptor, to activate sexually receptive behavior in the female rat. Infusions of STX into the arcuate nucleus of the hypothalamus resulted in the activation and internalization of μ-opioid receptors in the medial preoptic nucleus, an action that is required for lordosis behavior. Indeed, STX was able to augment sexual receptivity in female rats given a sub-behavioral dose of estradiol. However, if the mGluR1a antagonist, LY367,385, was administered prior to STX, its circuit-activating effects, the internalization of μ-opioid receptors, were lost. This suggests that the receptor stimulated by STX activates rapid membrane-initiated signaling through an interaction with mGluR1a - an effect previously described for estrogen receptor-α at the membrane.


Hormones and Behavior | 2013

Modulation of the arcuate nucleus–medial preoptic nucleus lordosis regulating circuit: A role for GABAB receptors☆

Kevin Sinchak; Phoebe Dewing; Laura Ponce; Liliana Gomez; Amy Christensen; Max Berger; Paul E. Micevych

Estradiol rapidly activates a microcircuit in the arcuate nucleus of the hypothalamus (ARH) that is needed for maximal female sexual receptivity. Membrane estrogen receptor-α complexes with and signals through the metabotropic glutamate receptor-1a stimulating NPY release within the ARH activating proopiomelanocortin (POMC) neurons. These POMC neurons project to the medial preoptic nucleus (MPN) and release β-endorphin. Estradiol treatment induces activation/internalization of MPN μ-opioid receptors (MOR) to inhibit lordosis. Estradiol membrane action modulates ARH gamma-aminobutyric acid receptor-B (GABAB) activity. We tested the hypothesis that ARH GABAB receptors mediate estradiol-induced MOR activation and facilitation of sexual receptivity. Double-label immunohistochemistry revealed expression of GABAB receptors in NPY, ERα and POMC expressing ARH neurons. Approximately 70% of POMC neurons expressed GABAB receptors. Because estradiol initially activates an inhibitory circuit and maintains activation of this circuit, the effects of blocking GABAB receptors were evaluated before estradiol benzoate (EB) treatment and after at the time of lordosis testing. Bilateral infusions of the GABAB receptor antagonist, CGP52432, into the ARH prior to EB treatment of ovariectomized rats prevented estradiol-induced activation/internalization of MPN MOR, and the rats remained unreceptive. However, in EB-treated rats, bilateral CGP52432 infusions 30 min before behavior testing attenuated MOR internalization and facilitated lordosis. These results indicated that GABAB receptors were located within the lordosis-regulating ARH microcircuit and are necessary for activation and maintenance of the estradiol inhibition of lordosis behavior. Although GABAB receptors positively influence estradiol signaling, they negatively regulate lordosis behavior since GABAB activity maintains the estradiol-induced inhibition.


Frontiers in Aging Neuroscience | 2015

Menopause, obesity and inflammation: interactive risk factors for Alzheimer’s disease

Amy Christensen; Christian J. Pike

Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder, the development of which is regulated by several environmental and genetic risk factors. Two factors theorized to contribute to the initiation and/or progression of AD pathogenesis are age-related increases in inflammation and obesity. These factors may be particularly problematic in women. The onset of menopause in mid-life elevates the vulnerability of women to AD, an increased risk that is likely associated with the depletion of estrogens. Menopause is also linked with an abundance of additional changes, including increased central adiposity and inflammation. Here, we review the current literature to explore the interactions between obesity, inflammation, menopause and AD.

Collaboration


Dive into the Amy Christensen's collaboration.

Top Co-Authors

Avatar

Christian J. Pike

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phoebe Dewing

University of California

View shared research outputs
Top Co-Authors

Avatar

Anusha Jayaraman

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kevin Sinchak

California State University

View shared research outputs
Top Co-Authors

Avatar

Rebekah S. Vest

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

V. Alexandra Moser

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Alexandra Moser

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Amanda Zhou

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge