Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy D. Kyle is active.

Publication


Featured researches published by Amy D. Kyle.


Health Affairs | 2011

Understanding The Cumulative Impacts Of Inequalities In Environmental Health: Implications For Policy

Rachel Morello-Frosch; Miriam Zuk; Michael Jerrett; Bhavna Shamasunder; Amy D. Kyle

Racial or ethnic minority groups and low-income communities have poorer health outcomes than others. They are more frequently exposed to multiple environmental hazards and social stressors, including poverty, poor housing quality, and social inequality. Researchers are grappling with how best to characterize the cumulative effects of these hazards and stressors in order to help regulators and decision makers craft more-effective policies to address health and environmental disparities. In this article we synthesize the existing scientific evidence regarding the cumulative health implications of higher rates of exposure to environmental hazards, along with individual biological susceptibility and social vulnerability. We conclude that current environmental policy, which is focused narrowly on pollutants and their sources, should be broadened to take into account the cumulative impact of exposures and vulnerabilities encountered by people who live in neighborhoods consisting largely of racial or ethnic minorities or people of low socioeconomic status.


Environmental Health Perspectives | 2007

Vulnerability as a Function of Individual and Group Resources in Cumulative Risk Assessment

Peter L. deFur; Gary W. Evans; Elaine A. Cohen Hubal; Amy D. Kyle; Rachel Morello-Frosch; David R. Williams

Background The field of risk assessment has focused on protecting the health of individual people or populations of wildlife from single risks, mostly from chemical exposure. The U.S. Environmental Protection Agency recently began to address multiple risks to communities in the “Framework for Cumulative Risk Assessment” [EPA/630/P02/001F. Washington DC:Risk Assessment Forum, U.S. Environmental Protection Agency (2003)]. Simultaneously, several reports concluded that some individuals and groups are more vulnerable to environmental risks than the general population. However, vulnerability has received little specific attention in the risk assessment literature. Objective Our objective is to examine the issue of vulnerability in cumulative risk assessment and present a conceptual framework rather than a comprehensive review of the literature. In this article we consider similarities between ecologic and human communities and the factors that make communities vulnerable to environmental risks. Discussion The literature provides substantial evidence on single environmental factors and simple conditions that increase vulnerability or reduce resilience for humans and ecologic systems. This observation is especially true for individual people and populations of wildlife. Little research directly addresses the topic of vulnerability in cumulative risk situations, especially at the community level. The community level of organization has not been adequately considered as an end point in either human or ecologic risk assessment. Furthermore, current information on human risk does not completely explain the level of response in cumulative risk conditions. Ecologic risk situations are similarly more complex and unpredictable for cases of cumulative risk. Conclusions Psychosocial conditions and responses are the principal missing element for humans. We propose a model for including psychologic and social factors as an integral component of cumulative risk assessment.


Environmental Science & Technology | 2009

An index for assessing demographic inequalities in cumulative environmental hazards with application to Los Angeles, California.

Jason G. Su; Rachel Morello-Frosch; Bill M. Jesdale; Amy D. Kyle; Bhavna Shamasunder; Michael Jerrett

Researchers in environmental justice contend that low-income communities and communities of color face greater impacts from environmental hazards. This is also of concern for policy makers. In this context, our paper has two principal objectives. First, we propose a method for creating an index capable of summarizing racial-ethnic and socioeconomic inequalities from the impact of cumulative environmental hazards. Second, we apply the index to Los Angeles County to illustrate the potential applications and complexities of its implementation. Individual environmental inequality indices are calculated based on unequal shares of environmental hazards for racial-ethnic groups and socioeconomic positions. The illustrated hazards include ambient concentrations of particulate matter, nitrogen dioxide, and estimates of cancer risk associated with modeled estimates for diesel particulate matter. The cumulative environmental hazard inequality index (CEHII) then combines individual environmental hazards, using either a multiplicative or an additive model. Significant but modest inequalities exist for both individual and cumulative environmental hazards in Los Angeles. The highest level of inequality among racial-ethnic and socioeconomic groups occurs when a multiplicative model is used to estimate cumulative hazard. The CEHII provides a generalized framework that incorporates environmental hazards and socioeconomic characteristics to assess inequalities in cumulative environmental risks.


Mutation Research-reviews in Mutation Research | 2009

Improving prediction of chemical carcinogenicity by considering multiple mechanisms and applying toxicogenomic approaches.

Kathryn Z. Guyton; Amy D. Kyle; Vincent Cogliano; David A. Eastmond; Marc Jackson; Nagalakshmi Keshava; Martha S. Sandy; Babasaheb Sonawane; Luoping Zhang; Michael D. Waters; Martyn T. Smith

While scientific knowledge of the potential health significance of chemical exposures has grown, experimental methods for predicting the carcinogenicity of environmental agents have not been substantially updated in the last two decades. Current methodologies focus first on identifying genotoxicants under the premise that agents capable of directly damaging DNA are most likely to be carcinogenic to humans. Emphasis on the distinction between genotoxic and non-genotoxic carcinogens is also motivated by assumed implications for the dose-response curve; it is purported that genotoxicants would lack a threshold in the low dose region, in contrast to non-genotoxic agents. However, for the vast majority of carcinogens, little if any empirical data exist to clarify the nature of the cancer dose-response relationship at low doses in the exposed human population. Recent advances in scientific understanding of cancer biology-and increased appreciation of the multiple impacts of carcinogens on this disease process-support the view that environmental chemicals can act through multiple toxicity pathways, modes and/or mechanisms of action to induce cancer and other adverse health outcomes. Moreover, the relationship between dose and a particular outcome in an individual could take multiple forms depending on genetic background, target tissue, internal dose and other factors besides mechanisms or modes of action; inter-individual variability and susceptibility in response are, in turn, key determinants of the population dose-response curve. New bioanalytical approaches (e.g., transcriptomics, proteomics, and metabolomics) applied in human, animal and in vitro studies could better characterize a wider array of hazard traits and improve the ability to predict the potential carcinogenicity of chemicals.


Environmental Health Perspectives | 2008

Meeting Report: Moving Upstream—Evaluating Adverse Upstream End Points for Improved Risk Assessment and Decision-Making

Tracey J. Woodruff; Lauren Zeise; Daniel A. Axelrad; Kathryn Z. Guyton; Sarah J. Janssen; Mark D. Miller; Gregory G. Miller; Jackie M. Schwartz; George V. Alexeeff; Henry A. Anderson; Linda S. Birnbaum; Frédéric Y. Bois; Vincent Cogliano; Kevin M. Crofton; Susan Y. Euling; Paul M. D. Foster; Dori R. Germolec; Earl Gray; Dale Hattis; Amy D. Kyle; Robert W. Luebke; Michael I. Luster; Chris Portier; Deborah C. Rice; Gina Solomon; John Vandenberg; R. Thomas Zoeller

Background Assessing adverse effects from environmental chemical exposure is integral to public health policies. Toxicology assays identifying early biological changes from chemical exposure are increasing our ability to evaluate links between early biological disturbances and subsequent overt downstream effects. A workshop was held to consider how the resulting data inform consideration of an “adverse effect” in the context of hazard identification and risk assessment. Objectives Our objective here is to review what is known about the relationships between chemical exposure, early biological effects (upstream events), and later overt effects (downstream events) through three case studies (thyroid hormone disruption, antiandrogen effects, immune system disruption) and to consider how to evaluate hazard and risk when early biological effect data are available. Discussion Each case study presents data on the toxicity pathways linking early biological perturbations with downstream overt effects. Case studies also emphasize several factors that can influence risk of overt disease as a result from early biological perturbations, including background chemical exposures, underlying individual biological processes, and disease susceptibility. Certain effects resulting from exposure during periods of sensitivity may be irreversible. A chemical can act through multiple modes of action, resulting in similar or different overt effects. Conclusions For certain classes of early perturbations, sufficient information on the disease process is known, so hazard and quantitative risk assessment can proceed using information on upstream biological perturbations. Upstream data will support improved approaches for considering developmental stage, background exposures, disease status, and other factors important to assessing hazard and risk for the whole population.


Public Health Reports | 2001

Evaluating the Health Significance of Hazardous Air Pollutants Using Monitoring Data

Amy D. Kyle; Catherine C. Wright; Jane C. Caldwell; Patricia Buffler; Tracey J. Woodruff

OBJECTIVE Though many contaminants are released into the atmosphere, in the US only six air pollutants-ozone, particulate matter, sulfur dioxide, carbon monoxide, nitrogen dioxide, and lead-are closely monitored and carefully assessed for health significance. Other pollutants, even if highly toxic, are neither widely monitored nor routinely assessed at the national level. The goal of this study was to analyze the availability of information needed to characterize the health significance of hazardous air pollutants, focusing on urban areas in California. METHODS The authors compared different approaches to identifying which contaminants should be considered hazardous air pollutants of potential health concern; reviewed the availability of toxicity values for these pollutants; and analyzed the usefulness of air monitoring data from California agencies for determining populations risks, by comparing method detection limits with health benchmarks. RESULTS Approaches to identifying air contaminants of possible health concern differ. Toxicity values are not available for many hazardous air pollutants, including those identified in the Clean Air Act. In California, monitoring data are available for many, though not all, pollutants of concern. Monitoring methods for several pollutants do not have adequate sensitivity to detect all relevant concentrations. CONCLUSION The information necessary to fully assess the health significance of hazardous air pollutants is not currently available.


Environmental Health Perspectives | 2005

Integrated assessment of environment and health: America's children and the environment.

Amy D. Kyle; Tracey J. Woodruff; Daniel A. Axelrad

The significance of the environment for health is increasingly being recognized. There is a need for systematic approaches to assessment of environmental factors most relevant to health, health outcomes most influenced by the environment, and the relationships between them, as well as for approaches to representing the results of such assessments in policy deliberations. As a step in the development of such methods, we used findings and data from the environmental protection and public health sectors to develop a set of measures representing topics relevant to children’s environmental health. We used a definition of the environment that emphasized contaminants and a process that involved both analytic and deliberative elements. The steps in this process were to a) develop a conceptual framework to depict relationships between environment and health with relevant types of data and information, b) select topic areas of significance for children, c) identify best available data sources and devise measures, d) assess possible surrogate data sources and measures when needed, e) design and implement metrics for computation of measures using specified data elements, f) select graphical representations of measures, g) identify related measures, and h) identify data gaps. Representatives of policy and stakeholder audiences participated in this process. The measures are presented in three groups that reflect contaminants in the environment, contaminants in human tissues, and diseases and disorders. The measures present scientifically based representations of data understandable to stakeholders and policy makers that integrate key information from the health and environment sectors in a consistent format.


Environmental Health Perspectives | 2006

Integrating research, surveillance, and practice in environmental public health tracking.

Amy D. Kyle; John R. Balmes; Patricia A. Buffler; Philip R. Lee

The Centers for Disease Control and Prevention in the U.S. Department of Health and Human Services is working with selected state and local health departments, academic centers, and others to develop an environmental public health tracking initiative to improve geographic and temporal surveillance of environmental hazards, exposures, and related health outcomes. The objective is to support policy strategies and interventions for disease prevention by communities and environmental health agencies at the federal, state, and local levels. The first 3 years of the initiative focused on supporting states and cities in developing capacity, information technology infrastructure, and pilot projects to demonstrate electronic linkage of environmental hazard or exposure data and disease data. The next phase requires implementation across states. This transition could provide opportunities to further integrate research, surveillance, and practice through attention to four areas. The first is to develop a shared and transparent knowledge base that draws on environmental health research and substantiates decisions about what to track and the interpretation of results. The second is to identify and address information needs of policy and stakeholder audiences in environmental health. The third is to adopt mechanisms for coordination, decision making, and governance that can incorporate and support the major entities involved. The fourth is to promote disease prevention by systematically identifying and addressing population-level environmental determinants of health and disease.


Environment International | 2012

Inequalities in cumulative environmental burdens among three urbanized counties in California

Jason G. Su; Michael Jerrett; Rachel Morello-Frosch; Bill M. Jesdale; Amy D. Kyle

Low-income communities and communities of color often suffer from multiple environmental hazards that pose risks to their health. Here we extended a cumulative environmental hazard inequality index (CEHII) - developed to assess inequalities in air pollution hazards - to compare the inequality among three urban counties in California: Alameda, San Diego, and Los Angeles. We included a metric for heat stress to the analysis because exposure to excessively hot weather is increasingly recognized as a threat to human health and well-being. We determined if inequalities from heat stress differed between the three regions and if this added factor modified the metric for inequality from cumulative exposure to air pollution. This analysis indicated that of the three air pollutants considered, diesel particulate matter had the greatest inequality, followed by nitrogen dioxide (NO(2)) and fine particulate matter (PM(2.5)). As measured by our index, the inequalities from cumulative exposure to air pollution were greater than those of single pollutants. Inequalities were significantly different among single air pollutant hazards within each region and between regions; however, inequalities from the cumulative burdens did not differ significantly between any two regions. Modeled absolute and relative heat stress inequalities were small except for relative heat stress in San Diego which had the second highest inequality. Our analysis, techniques, and results provide useful insights for policy makers to assess inequalities between regions and address factors that contribute to overall environmental inequality within each region.


Ciencia & Saude Coletiva | 2006

Integrated assessment of environment and health: America's children and the environment

Amy D. Kyle; Tracey J. Woodruff; Daniel A. Axelrad

The significance of the environment for health is increasingly being recognized. There is a need for systematic approaches to assessment of environmental factors most relevant to health, health outcomes most influenced by the environment, and the relationships between them, as well as for approaches to representing the results of such assessments in policy deliberations. As a step in the development of such methods, we used findings and data from the environmental protection and public health sectors to develop a set of measures representing topics relevant to childrens environmental health. We used a definition of the environment that emphasized contaminants and a process that involved both analytic and deliberative elements. The steps in this process were to a) develop a conceptual framework to depict relationships between environment and health with relevant types of data and information, b) select topic areas of significance for children, c) identify best available data sources and devise measures, d) assess possible surrogate data sources and measures when needed, e) design and implement metrics for computation of measures using specified data elements, f) select graphical representations of measures, g) identify related measures, and h) identify data gaps. Representatives of policy and stakeholder audiences participated in this process. The measures are presented in three groups that reflect contaminants in the environment, contaminants in human tissues, and diseases and disorders. The measures present scientifically based representations of data understandable to stakeholders and policy makers that integrate key information from the health and environment sectors in a consistent format.

Collaboration


Dive into the Amy D. Kyle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel A. Axelrad

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory G. Miller

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas E. McKone

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael Zwicky Hauschild

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Stig Irving Olsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge