Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy E. Oakley is active.

Publication


Featured researches published by Amy E. Oakley.


Endocrinology | 2009

Cortisol reduces gonadotropin-releasing hormone pulse frequency in follicular phase ewes: Influence of ovarian steroids

Amy E. Oakley; Kellie M. Breen; Iain J. Clarke; Fred J. Karsch; Elizabeth R. Wagenmaker; Alan J. Tilbrook

Stress-like elevations in plasma glucocorticoids suppress gonadotropin secretion and can disrupt ovarian cyclicity. In sheep, cortisol acts at the pituitary to reduce responsiveness to GnRH but does not affect GnRH pulse frequency in the absence of ovarian hormones. However, in ewes during the follicular phase of the estrous cycle, cortisol reduces LH pulse frequency. To test the hypothesis that cortisol reduces GnRH pulse frequency in the presence of ovarian steroids, the effect of cortisol on GnRH secretion was monitored directly in pituitary portal blood of follicular phase sheep in the presence and absence of a cortisol treatment that elevated plasma cortisol to a level observed during stress. An acute (6 h) cortisol increase in the midfollicular phase did not lower GnRH pulse frequency. However, a more prolonged (27 h) increase in cortisol beginning just before the decrease in progesterone reduced GnRH pulse frequency by 45% and delayed the preovulatory LH surge by 10 h. To determine whether the gonadal steroid milieu of the follicular phase enables cortisol to reduce GnRH pulse frequency, GnRH was monitored in ovariectomized ewes treated with estradiol and progesterone to create an artificial follicular phase. A sustained increment in plasma cortisol reduced GnRH pulse frequency by 70% in this artificial follicular phase, in contrast to the lack of an effect in untreated ovariectomized ewes as seen previously. Thus, a sustained stress-like level of cortisol suppresses GnRH pulse frequency in follicular phase ewes, and this appears to be dependent upon the presence of ovarian steroids.


Endocrinology | 2009

Psychosocial Stress Inhibits Amplitude of Gonadotropin-Releasing Hormone Pulses Independent of Cortisol Action on the Type II Glucocorticoid Receptor

Elizabeth R. Wagenmaker; Kellie M. Breen; Amy E. Oakley; Alan J. Tilbrook; Fred J. Karsch

Our laboratory has developed a paradigm of psychosocial stress (sequential layering of isolation, blindfold, and predator cues) that robustly elevates cortisol secretion and decreases LH pulse amplitude in ovariectomized ewes. This decrease in LH pulse amplitude is due, at least in part, to a reduction in pituitary responsiveness to GnRH, caused by cortisol acting via the type II glucocorticoid receptor (GR). The first experiment of the current study aimed to determine whether this layered psychosocial stress also inhibits pulsatile GnRH release into pituitary portal blood. The stress paradigm significantly reduced GnRH pulse amplitude compared with nonstressed ovariectomized ewes. The second experiment tested if this stress-induced decrease in GnRH pulse amplitude is mediated by cortisol action on the type II GR. Ovariectomized ewes were allocated to three groups: nonstress control, stress, and stress plus the type II GR antagonist RU486. The layered psychosocial stress paradigm decreased GnRH and LH pulse amplitude compared with nonstress controls. Importantly, the stress also lowered GnRH pulse amplitude to a comparable extent in ewes in which cortisol action via the type II GR was antagonized. Therefore, we conclude that psychosocial stress reduces the amplitude of GnRH pulses independent of cortisol action on the type II GR. The present findings, combined with our recent observations, suggest that the mechanisms by which psychosocial stress inhibits reproductive neuroendocrine activity at the hypothalamic and pituitary levels are fundamentally different.


Biology of Reproduction | 2009

Cortisol Interferes with the Estradiol-Induced Surge of Luteinizing Hormone in the Ewe

Elizabeth R. Wagenmaker; Kellie M. Breen; Amy E. Oakley; Bree Pierce; Alan J. Tilbrook; Anne I. Turner; Fred J. Karsch

Abstract Two experiments were conducted to test the hypothesis that cortisol interferes with the positive feedback action of estradiol that induces the luteinizing hormone (LH) surge. Ovariectomized sheep were treated sequentially with progesterone and estradiol to create artificial estrous cycles. Cortisol or vehicle (saline) was infused from 2 h before the estradiol stimulus through the time of the anticipated LH surge in the artificial follicular phase of two successive cycles. The plasma cortisol increment produced by infusion was ∼1.5 times greater than maximal concentrations seen during infusion of endotoxin, which is a model of immune/inflammatory stress. In experiment 1, half of the ewes received vehicle in the first cycle and cortisol in the second; the others were treated in reverse order. All ewes responded with an LH surge. Cortisol delayed the LH surge and reduced its amplitude, but both effects were observed only in the second cycle. Experiment 2 was modified to provide better control for a cycle effect. Four treatment sequences were tested (cycle 1-cycle 2): vehicle-vehicle, cortisol-cortisol, vehicle-cortisol, cortisol-vehicle. Again, cortisol delayed but did not block the LH surge, and this delay occurred in both cycles. Thus, an elevation in plasma cortisol can interfere with the positive feedback action of estradiol by delaying and attenuating the LH surge.


Endocrinology | 2009

Role of Estradiol in Cortisol-Induced Reduction of Luteinizing Hormone Pulse Frequency

Amy E. Oakley; Kellie M. Breen; Alan J. Tilbrook; Elizabeth R. Wagenmaker; Fred J. Karsch

Precise control of pulsatile GnRH and LH release is imperative to ovarian cyclicity but is vulnerable to environmental perturbations, like stress. In sheep, a sustained (29 h) increase in plasma cortisol to a level observed during stress profoundly reduces GnRH pulse frequency in ovariectomized ewes treated with ovarian steroids, whereas shorter infusion (6 h) is ineffective in the absence of ovarian hormones. This study first determined whether the ovarian steroid milieu or duration of exposure is the relevant factor in determining whether cortisol reduces LH pulse frequency. Prolonged (29 h) cortisol infusion did not lower LH pulse frequency in ovariectomized ewes deprived of ovarian hormones, but it did so in ovariectomized ewes treated with estradiol and progesterone to create an artificial estrous cycle, implicating ovarian steroids as the critical factor. Importantly, this effect of cortisol was more pronounced after the simulated preovulatory estradiol rise of the artificial follicular phase. The second experiment examined which component of the ovarian steroid milieu enables cortisol to reduce LH pulse frequency in the artificial follicular phase: prior exposure to progesterone in the luteal phase, low early follicular phase estradiol levels, or the preovulatory estradiol rise. Basal estradiol enabled cortisol to decrease LH pulse frequency, but the response was potentiated by the estradiol rise. These findings lead to the conclusion that ovarian steroids, particularly estradiol, enable cortisol to inhibit LH pulse frequency. Moreover, the results provide new insight into the means by which gonadal steroids, and possibly reproductive status, modulate neuroendocrine responses to stress.


Neuroendocrinology | 2009

Estradiol Enables Cortisol to Act Directly upon the Pituitary to Suppress Pituitary Responsiveness to GnRH in Sheep

Bree Pierce; Catherine A. Stackpole; Kellie M. Breen; Iain J. Clarke; Fred J. Karsch; Elizabeth T.A. Rivalland; Anne I. Turner; David Caddy; Elizabeth R. Wagenmaker; Amy E. Oakley; Alan J. Tilbrook

We have shown that cortisol infusion reduced the luteinizing hormone (LH) response to fixed hourly GnRH injections in ovariectomized ewes treated with estradiol during the non-breeding season (pituitary-clamp model). In contrast, cortisol did not affect the response to 2 hourly invariant GnRH injections in hypothalamo-pituitary disconnected ovariectomized ewes during the breeding season. To understand the differing results in these animal models and to determine if cortisol can act directly at the pituitary to suppress responsiveness to GnRH, we investigated the importance of the frequency of GnRH stimulus, the presence of estradiol and stage of the circannual breeding season. In experiment 1, during the non-breeding season, ovariectomized ewes were treated with estradiol, and pulsatile LH secretion was restored with i.v. GnRH injections either hourly or 2 hourly in the presence or absence of exogenous cortisol. Experiments 2 and 3 were conducted in hypothalamo-pituitary disconnected ovariectomized ewes in which GnRH was injected i.v. every 2 h. Experiment 2 was conducted during the non-breeding season and saline or cortisol was infused for 30 h in a cross-over design. Experiment 3 was conducted during the non-breeding and breeding seasons and saline or cortisol was infused for 30 h in the absence and presence of estradiol using a cross-over design. Samples were taken from all animals to measure plasma LH. LH pulse amplitude was reduced by cortisol in the pituitary clamp model with no difference between the hourly and 2-hourly GnRH pulse mode. In the absence of estradiol, there was no effect of cortisol on LH pulse amplitude in GnRH-replaced ovariectomized hypothalamo-pituitary disconnected ewes in either season. The LH pulse amplitude was reduced in both seasons in experiment 3 when cortisol was infused during estradiol treatment. We conclude that the ability of cortisol to reduce LH secretion does not depend upon the frequency of GnRH stimulus and that estradiol enables cortisol to act directly on the pituitary of ovariectomized hypothalamo-pituitary disconnected ewes to suppress the responsiveness to GnRH; this effect occurs in the breeding and non-breeding seasons.


Biology of Reproduction | 2010

The Estrous Cycle of the Ewe Is Resistant to Disruption by Repeated, Acute Psychosocial Stress

Elizabeth R. Wagenmaker; Kellie M. Breen; Amy E. Oakley; Alan J. Tilbrook; Fred J. Karsch

Five experiments were conducted to test the hypothesis that psychosocial stress interferes with the estrous cycle of sheep. In experiment 1, ewes were repeatedly isolated during the follicular phase. Timing, amplitude, and duration of the preovulatory luteinizing hormone (LH) surge were not affected. In experiment 2, follicular-phase ewes were subjected twice to a “layered stress” paradigm consisting of sequential, hourly application of isolation, restraint, blindfold, and predator cues. This reduced the LH pulse amplitude but did not affect the LH surge. In experiment 3, different acute stressors were given sequentially within the follicular phase: food denial plus unfamiliar noises and forced exercise, layered stress, exercise around midnight, and transportation. This, too, did not affect the LH surge. In experiment 4, variable acute psychosocial stress was given every 1–2 days for two entire estrous cycles; this did not disrupt any parameter of the cycle monitored. Lastly, experiment 5 examined whether the psychosocial stress paradigms of experiment 4 would disrupt the cycle and estrous behavior if sheep were metabolically stressed by chronic food restriction. Thirty percent of the food-restricted ewes exhibited deterioration of estrous cycle parameters followed by cessation of cycles and failure to express estrous behavior. However, disruption was not more evident in ewes that also encountered psychosocial stress. Collectively, these findings indicate the estrous cycle of sheep is remarkably resistant to disruption by acute bouts of psychosocial stress applied intermittently during either a single follicular phase or repeatedly over two estrous cycles.


Reproductive Biology and Endocrinology | 2010

Membrane-initiated actions of estradiol (E2) in the regulation of LH secretion in ovariectomized (OVX) ewes

J. Alejandro Arreguin-Arevalo; Ryan L. Ashley; Elizabeth R. Wagenmaker; Amy E. Oakley; Fred J. Karsch; Terry M. Nett

BackgroundWe demonstrated that E2 conjugated to BSA (E2BSA) induces a rapid membrane-initiated inhibition of LH secretion followed hours later by a slight increase in LH secretion. Whether these actions of E2BSA are restricted to the pituitary gland and whether the membrane-initiated pathway of E2BSA contributes to the up-regulation of the number of GnRH receptors during the positive feedback effect of E2 were evaluated here. We have shown that the suppression of LH secretion induced by E2 and E2BSA is the result of a decreased responsiveness of the pituitary gland to GnRH. In this study we further tested the ability of E2BSA to decrease the responsiveness of the pituitary gland to GnRH under the paradigm of the preovulatory surge of LH induced by E2.MethodsFor the first experiment GnRH and LH secretions were determined in samples of pituitary portal and jugular blood, respectively, in ewes treated with 12 mg E2BSA. In the second experiment, the number of GnRH receptors was quantified in ewes 12 h after administration of 25 micrograms E2 (the expected time for the increase in the number of GnRH receptors and the positive feedback effect of E2 in LH secretion) or 12 mg E2BSA. In the third experiment, the preovulatory-like surge of LH was characterized in ewes injected with 25 micrograms E2 alone or followed 8 h later (before the beginning of the LH surge) with 60 mg E2BSA.Resultsa) the decrease in LH secretion induced by E2BSA was not accompanied by changes in the pulsatile pattern of GnRH, b) E2BSA increased the number of GnRH receptors, and c) the presence of E2BSA in E2-treated ewes delayed the onset, reduced the length, and decreased the amount of LH released during the preovulatory surge of LH.Conclusionsa) the rapid suppression of LH secretion induced by E2BSA is mediated only via a direct action on the pituitary gland, b) E2 acting via a membrane-initiated pathway contributes to increase the number of GnRH receptors and, c) administration of E2BSA near the beginning of the pre-ovulatory surge of LH delays and reduces the magnitude of the surge.


Endocrinology | 2007

Does Cortisol Acting Via the Type II Glucocorticoid Receptor Mediate Suppression of Pulsatile Luteinizing Hormone Secretion in Response to Psychosocial Stress

Kellie M. Breen; Amy E. Oakley; Andrew V. Pytiak; Alan J. Tilbrook; Elizabeth R. Wagenmaker; Fred J. Karsch


Endocrinology | 2008

Insight into the neuroendocrine site and cellular mechanism by which cortisol suppresses pituitary responsiveness to gonadotropin-releasing hormone.

Kellie M. Breen; Tracy L. Davis; Lisa Case Doro; Terry M. Nett; Amy E. Oakley; Vasantha Padmanabhan; Louisa A. Rispoli; Elizabeth R. Wagenmaker; Fred J. Karsch


Archive | 2010

Researched actions of estradiol (E2) in the regulation of LH secretion in ovariectomized (OVX) ewes

J. Alejandro Arreguin-Arevalo; Ryan L. Ashley; Elizabeth R. Wagenmaker; Amy E. Oakley; Fred J. Karsch; Terry M. Nett

Collaboration


Dive into the Amy E. Oakley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan J. Tilbrook

South Australian Research and Development Institute

View shared research outputs
Top Co-Authors

Avatar

Terry M. Nett

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan L. Ashley

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge