Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kellie M. Breen is active.

Publication


Featured researches published by Kellie M. Breen.


Frontiers in Neuroendocrinology | 2006

New insights regarding glucocorticoids, stress and gonadotropin suppression

Kellie M. Breen; Fred J. Karsch

This review highlights our recent work investigating the inhibitory effects of acute, physiologic stress-like increases in cortisol on reproductive neuroendocrine activity in sheep, the mechanisms responsible for this suppression, and the relevance of enhanced glucocorticoid secretion to stress-induced inhibition of gonadotropin secretion in this species. Initial studies established that cortisol rapidly suppresses pulsatile luteinizing hormone secretion. In ovariectomized ewes, this inhibition reflects the reduction of pituitary responsiveness to gonadotropin-releasing hormone mediated by the type II glucocorticoid receptor, rather than the suppression in hypothalamic gonadotropin-releasing hormone release. Studies in ovary-intact ewes, however, uncovered an alternative mode of cortisol action. During the follicular phase of the estrous cycle, cortisol reduces luteinizing hormone pulse frequency, most likely via the inhibition of gonadotropin-releasing hormone pulsatility. Recent preliminary evidence in ovariectomized ewes demonstrates increased cortisol secretion is essential for disruption of pulsatile luteinizing hormone secretion in response to a psychosocial stress. Taken together, our observations reveal diverse inhibitory actions of cortisol on gonadotropin secretion and that this glucocorticoid is not only sufficient, but necessary for suppression of reproductive neuroendocrine activity in response to certain types of stress.


Stress | 2002

Mechanisms for Ovarian Cycle Disruption by Immune/inflammatory Stress

Fred J. Karsch; Deborah F. Battaglia; Kellie M. Breen; Nathalie Debus; Thomas G. Harris

This review summarizes highlights of our experiments investigating mechanisms, mediators and sites by which endotoxin disrupts reproductive neuroendocrine activity and interferes with the estrous cycle of sheep. Endotoxin, or lipopolysaccharide (LPS), is a commonly used model for immune and inflammatory stress. When administered to ovary-intact ewes, endotoxin interrupts the follicular phase of the cycle by interfering with several steps in the preovulatory chain of endocrine events. One such step is the development of high frequency LH pulses, which provide an essential stimulus for the preovulatory increase in estradiol secretion from the ovarian follicle. Follow-up experiments in ovariectomized ewes demonstrate that endotoxin inhibits pulsatile LH secretion at both the hypothalamic and pituitary levels, suppressing pulsatile GnRH secretion and reducing pituitary responsiveness to GnRH. This disruption of GnRH and LH pulsatility is mediated by pathways that include the synthesis of prostaglandins and cortisol, both of which are increased by endotoxin. It is postulated that a prostaglandin-mediated pathway disrupts the cycle during immune and inflammatory stress, whereas a separate cortisol-mediated pathway reinforces this disruption and also participates more generally in suppressing cyclicity during other stressful situations that activate the hypothalamo-pituitary-adrenal axis.


Endocrinology | 2009

Cortisol reduces gonadotropin-releasing hormone pulse frequency in follicular phase ewes: Influence of ovarian steroids

Amy E. Oakley; Kellie M. Breen; Iain J. Clarke; Fred J. Karsch; Elizabeth R. Wagenmaker; Alan J. Tilbrook

Stress-like elevations in plasma glucocorticoids suppress gonadotropin secretion and can disrupt ovarian cyclicity. In sheep, cortisol acts at the pituitary to reduce responsiveness to GnRH but does not affect GnRH pulse frequency in the absence of ovarian hormones. However, in ewes during the follicular phase of the estrous cycle, cortisol reduces LH pulse frequency. To test the hypothesis that cortisol reduces GnRH pulse frequency in the presence of ovarian steroids, the effect of cortisol on GnRH secretion was monitored directly in pituitary portal blood of follicular phase sheep in the presence and absence of a cortisol treatment that elevated plasma cortisol to a level observed during stress. An acute (6 h) cortisol increase in the midfollicular phase did not lower GnRH pulse frequency. However, a more prolonged (27 h) increase in cortisol beginning just before the decrease in progesterone reduced GnRH pulse frequency by 45% and delayed the preovulatory LH surge by 10 h. To determine whether the gonadal steroid milieu of the follicular phase enables cortisol to reduce GnRH pulse frequency, GnRH was monitored in ovariectomized ewes treated with estradiol and progesterone to create an artificial follicular phase. A sustained increment in plasma cortisol reduced GnRH pulse frequency by 70% in this artificial follicular phase, in contrast to the lack of an effect in untreated ovariectomized ewes as seen previously. Thus, a sustained stress-like level of cortisol suppresses GnRH pulse frequency in follicular phase ewes, and this appears to be dependent upon the presence of ovarian steroids.


Endocrinology | 2009

Psychosocial Stress Inhibits Amplitude of Gonadotropin-Releasing Hormone Pulses Independent of Cortisol Action on the Type II Glucocorticoid Receptor

Elizabeth R. Wagenmaker; Kellie M. Breen; Amy E. Oakley; Alan J. Tilbrook; Fred J. Karsch

Our laboratory has developed a paradigm of psychosocial stress (sequential layering of isolation, blindfold, and predator cues) that robustly elevates cortisol secretion and decreases LH pulse amplitude in ovariectomized ewes. This decrease in LH pulse amplitude is due, at least in part, to a reduction in pituitary responsiveness to GnRH, caused by cortisol acting via the type II glucocorticoid receptor (GR). The first experiment of the current study aimed to determine whether this layered psychosocial stress also inhibits pulsatile GnRH release into pituitary portal blood. The stress paradigm significantly reduced GnRH pulse amplitude compared with nonstressed ovariectomized ewes. The second experiment tested if this stress-induced decrease in GnRH pulse amplitude is mediated by cortisol action on the type II GR. Ovariectomized ewes were allocated to three groups: nonstress control, stress, and stress plus the type II GR antagonist RU486. The layered psychosocial stress paradigm decreased GnRH and LH pulse amplitude compared with nonstress controls. Importantly, the stress also lowered GnRH pulse amplitude to a comparable extent in ewes in which cortisol action via the type II GR was antagonized. Therefore, we conclude that psychosocial stress reduces the amplitude of GnRH pulses independent of cortisol action on the type II GR. The present findings, combined with our recent observations, suggest that the mechanisms by which psychosocial stress inhibits reproductive neuroendocrine activity at the hypothalamic and pituitary levels are fundamentally different.


Biology of Reproduction | 2015

A Novel Letrozole Model Recapitulates Both the Reproductive and Metabolic Phenotypes of Polycystic Ovary Syndrome in Female Mice

Alexander S. Kauffman; Varykina G. Thackray; Genevieve E. Ryan; Kristen P. Tolson; Christine A. Glidewell-Kenney; Sheila J. Semaan; Matthew C. Poling; Nahoko Iwata; Kellie M. Breen; Antoni J. Duleba; Elisabet Stener-Victorin; Shunichi Shimasaki; Nicholas J. G. Webster; Pamela L. Mellon

ABSTRACT Polycystic ovary syndrome (PCOS) pathophysiology is poorly understood, due partly to lack of PCOS animal models fully recapitulating this complex disorder. Recently, a PCOS rat model using letrozole (LET), a nonsteroidal aromatase inhibitor, mimicked multiple PCOS phenotypes, including metabolic features absent in other models. Given the advantages of using genetic and transgenic mouse models, we investigated whether LET produces a similar PCOS phenotype in mice. Pubertal female C57BL/6N mice were treated for 5 wk with LET, which resulted in increased serum testosterone and normal diestrus levels of estradiol, similar to the hyperandrogenemia and follicular phase estrogen levels of PCOS women. As in PCOS, ovaries from LET mice were larger, polycystic, and lacked corpora lutea versus controls. Most LET females were acyclic, and all were infertile. LET females displayed elevated serum LH levels and higher Lhb mRNA in the pituitary. In contrast, serum FSH and Fshb were significantly reduced in LET females, demonstrating differential effects on gonadotropins, as in PCOS. Within the ovary, LET females had higher Cyp17, Cyp19, and Fsh receptor mRNA expression. In the hypothalamus, LET females had higher kisspeptin receptor mRNA expression but lower progesterone receptor mRNA levels. LET females also gained more weight than controls, had increased abdominal adiposity and adipocyte size, elevated adipose inflammatory mRNA levels, and impaired glucose tolerance, mirroring the metabolic phenotype in PCOS women. This is the first report of a LET paradigm in mice that recapitulates both reproductive and metabolic PCOS phenotypes and will be useful to genetically probe the PCOS condition.


Biology of Reproduction | 2009

Cortisol Interferes with the Estradiol-Induced Surge of Luteinizing Hormone in the Ewe

Elizabeth R. Wagenmaker; Kellie M. Breen; Amy E. Oakley; Bree Pierce; Alan J. Tilbrook; Anne I. Turner; Fred J. Karsch

Abstract Two experiments were conducted to test the hypothesis that cortisol interferes with the positive feedback action of estradiol that induces the luteinizing hormone (LH) surge. Ovariectomized sheep were treated sequentially with progesterone and estradiol to create artificial estrous cycles. Cortisol or vehicle (saline) was infused from 2 h before the estradiol stimulus through the time of the anticipated LH surge in the artificial follicular phase of two successive cycles. The plasma cortisol increment produced by infusion was ∼1.5 times greater than maximal concentrations seen during infusion of endotoxin, which is a model of immune/inflammatory stress. In experiment 1, half of the ewes received vehicle in the first cycle and cortisol in the second; the others were treated in reverse order. All ewes responded with an LH surge. Cortisol delayed the LH surge and reduced its amplitude, but both effects were observed only in the second cycle. Experiment 2 was modified to provide better control for a cycle effect. Four treatment sequences were tested (cycle 1-cycle 2): vehicle-vehicle, cortisol-cortisol, vehicle-cortisol, cortisol-vehicle. Again, cortisol delayed but did not block the LH surge, and this delay occurred in both cycles. Thus, an elevation in plasma cortisol can interfere with the positive feedback action of estradiol by delaying and attenuating the LH surge.


Endocrinology | 2009

Role of Estradiol in Cortisol-Induced Reduction of Luteinizing Hormone Pulse Frequency

Amy E. Oakley; Kellie M. Breen; Alan J. Tilbrook; Elizabeth R. Wagenmaker; Fred J. Karsch

Precise control of pulsatile GnRH and LH release is imperative to ovarian cyclicity but is vulnerable to environmental perturbations, like stress. In sheep, a sustained (29 h) increase in plasma cortisol to a level observed during stress profoundly reduces GnRH pulse frequency in ovariectomized ewes treated with ovarian steroids, whereas shorter infusion (6 h) is ineffective in the absence of ovarian hormones. This study first determined whether the ovarian steroid milieu or duration of exposure is the relevant factor in determining whether cortisol reduces LH pulse frequency. Prolonged (29 h) cortisol infusion did not lower LH pulse frequency in ovariectomized ewes deprived of ovarian hormones, but it did so in ovariectomized ewes treated with estradiol and progesterone to create an artificial estrous cycle, implicating ovarian steroids as the critical factor. Importantly, this effect of cortisol was more pronounced after the simulated preovulatory estradiol rise of the artificial follicular phase. The second experiment examined which component of the ovarian steroid milieu enables cortisol to reduce LH pulse frequency in the artificial follicular phase: prior exposure to progesterone in the luteal phase, low early follicular phase estradiol levels, or the preovulatory estradiol rise. Basal estradiol enabled cortisol to decrease LH pulse frequency, but the response was potentiated by the estradiol rise. These findings lead to the conclusion that ovarian steroids, particularly estradiol, enable cortisol to inhibit LH pulse frequency. Moreover, the results provide new insight into the means by which gonadal steroids, and possibly reproductive status, modulate neuroendocrine responses to stress.


Biology of Reproduction | 2006

Does Season Alter Responsiveness of the Reproductive Neuroendocrine Axis to the Suppressive Actions of Cortisol in Ovariectomized Ewes

Kellie M. Breen; Fred J. Karsch

Abstract Season can profoundly influence activity of the hypothalamic-pituitary-adrenal axis and alter reproductive neuroendocrine responsiveness to stress and gonadal steroids. Here we tested the hypothesis that the inhibitory effect of a stress-like increment in plasma concentration of the adrenal steroid cortisol on pulsatile LH secretion varies with season. LH pulse patterns were monitored prior to and during the administration of cortisol in the same seven ovariectomized ewes during three stages of the yearly breeding cycle: breeding season, transition to anestrus, and midanestrus. The elevation in cortisol mimicked the rise in plasma level of cortisol in response to an immune/inflammatory stress. During all three seasons, cortisol acutely suppressed the pulsatile release of LH. This inhibition reflected a marked reduction of LH pulse amplitude and a minimal suppression of LH pulse frequency. Of interest, the suppressive effect of this physiologic increment in cortisol did not vary across seasons. This provides initial evidence that, in ovariectomized ewes, cortisol-induced suppression of pulsatile LH secretion differs from that of gonadal steroids in that it is not profoundly influenced by season.


Endocrinology | 2016

Corticosterone Blocks Ovarian Cyclicity and the LH Surge via Decreased Kisspeptin Neuron Activation in Female Mice

Elena Luo; Shannon B. Z. Stephens; Sharon Chaing; Nagambika Munaganuru; Alexander S. Kauffman; Kellie M. Breen

Stress elicits activation of the hypothalamic-pituitary-adrenal axis, which leads to enhanced circulating glucocorticoids, as well as impaired gonadotropin secretion and ovarian cyclicity. Here, we tested the hypothesis that elevated, stress-levels of glucocorticoids disrupt ovarian cyclicity by interfering with the preovulatory sequence of endocrine events necessary for the LH surge. Ovarian cyclicity was monitored in female mice implanted with a cholesterol or corticosterone (Cort) pellet. Cort, but not cholesterol, arrested cyclicity in diestrus. Subsequent studies focused on the mechanism whereby Cort stalled the preovulatory sequence by assessing responsiveness to the positive feedback estradiol signal. Ovariectomized mice were treated with an LH surge-inducing estradiol implant, as well as Cort or cholesterol, and assessed several days later for LH levels on the evening of the anticipated surge. All cholesterol females showed a clear LH surge. At the time of the anticipated surge, LH levels were undetectable in Cort-treated females. In situ hybridization analyses the anteroventral periventricular nucleus revealed that Cort robustly suppressed the percentage of Kiss1 cells coexpressing cfos, as well as reduced the number of Kiss1 cells and amount of Kiss1 mRNA per cell, compared with expression in control brains. In addition, Cort blunted pituitary expression of the genes encoding the GnRH receptor and LHβ, indicating inhibition of gonadotropes during the blockage of the LH surge. Collectively, our findings support the hypothesis that physiological stress-levels of Cort disrupts ovarian cyclicity, in part, through disruption of positive feedback mechanisms at both the hypothalamic and pituitary levels which are necessary for generation of the preovulatory LH surge.


Molecular and Cellular Endocrinology | 2014

Influence of stress-induced intermediates on gonadotropin gene expression in gonadotrope cells

Kellie M. Breen; Pamela L. Mellon

Despite extensive investigation, a comprehensive understanding of the mechanisms whereby stress impacts fertility remains elusive. Since the 1930s, when Hans Selye popularized studying adaptations to stress (Selye, 1937), we have learned that compensatory mechanisms involve a complex interplay of neural and hormonal processes that allow various body functions to adjust to stress, in a coordinated manner. In terms of reproduction, the adjustment to a stressor interferes with integrated functioning at multiple levels of regulation--the hypothalamus, anterior pituitary gland, gonads, and neural centers coordinating behavior. Various mediators are postulated to participate in reproductive suppression. These include catecholamines, cytokines, prostaglandins, endogenous opioid peptides, and hormones of the hypothalamic-pituitary-adrenal axis. This review focuses on one class of mediators, the glucocorticoids, and provides our views on the relevance and mode of action of this inhibitory intermediate within the anterior pituitary gonadotrope, as a potential cellular site whereby glucocorticoids contribute to stress-induced reproductive suppression.

Collaboration


Dive into the Kellie M. Breen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan J. Tilbrook

South Australian Research and Development Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Djurdjica Coss

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge