Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy Goldberg is active.

Publication


Featured researches published by Amy Goldberg.


Nature | 2016

Post-invasion demography of prehistoric humans in South America

Amy Goldberg; Alexis M. Mychajliw; Elizabeth A. Hadly

As the last habitable continent colonized by humans, the site of multiple domestication hotspots, and the location of the largest Pleistocene megafaunal extinction, South America is central to human prehistory. Yet remarkably little is known about human population dynamics during colonization, subsequent expansions, and domestication. Here we reconstruct the spatiotemporal patterns of human population growth in South America using a newly aggregated database of 1,147 archaeological sites and 5,464 calibrated radiocarbon dates spanning fourteen thousand to two thousand years ago (ka). We demonstrate that, rather than a steady exponential expansion, the demographic history of South Americans is characterized by two distinct phases. First, humans spread rapidly throughout the continent, but remained at low population sizes for 8,000 years, including a 4,000-year period of ‘boom-and-bust’ oscillations with no net growth. Supplementation of hunting with domesticated crops and animals had a minimal impact on population carrying capacity. Only with widespread sedentism, beginning ~5 ka, did a second demographic phase begin, with evidence for exponential population growth in cultural hotspots, characteristic of the Neolithic transition worldwide. The unique extent of humanity’s ability to modify its environment to markedly increase carrying capacity in South America is therefore an unexpectedly recent phenomenon.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Ancient X chromosomes reveal contrasting sex bias in Neolithic and Bronze Age Eurasian migrations

Amy Goldberg; Torsten Günther; Noah A. Rosenberg; Mattias Jakobsson

Significance Studies of differing female and male demographic histories on the basis of ancient genomes can provide insight into the social structures and cultural interactions during major events in human prehistory. We consider the sex-specific demography of two of the largest migrations in recent European prehistory. Using genome-wide ancient genetic data from multiple Eurasian populations spanning the last 10,000 years, we find no evidence of sex-biased migrations from Anatolia, despite the shift to patrilocality associated with the spread of farming. In contrast, we infer a massive male-biased migration from the steppe during the late Neolithic and Bronze Age. The contrasting patterns of sex-specific migration during these two migrations suggest that different sociocultural processes drove the two events. Dramatic events in human prehistory, such as the spread of agriculture to Europe from Anatolia and the late Neolithic/Bronze Age migration from the Pontic-Caspian Steppe, can be investigated using patterns of genetic variation among the people who lived in those times. In particular, studies of differing female and male demographic histories on the basis of ancient genomes can provide information about complexities of social structures and cultural interactions in prehistoric populations. We use a mechanistic admixture model to compare the sex-specifically–inherited X chromosome with the autosomes in 20 early Neolithic and 16 late Neolithic/Bronze Age human remains. Contrary to previous hypotheses suggested by the patrilocality of many agricultural populations, we find no evidence of sex-biased admixture during the migration that spread farming across Europe during the early Neolithic. For later migrations from the Pontic Steppe during the late Neolithic/Bronze Age, however, we estimate a dramatic male bias, with approximately five to 14 migrating males for every migrating female. We find evidence of ongoing, primarily male, migration from the steppe to central Europe over a period of multiple generations, with a level of sex bias that excludes a pulse migration during a single generation. The contrasting patterns of sex-specific migration during these two migrations suggest a view of differing cultural histories in which the Neolithic transition was driven by mass migration of both males and females in roughly equal numbers, perhaps whole families, whereas the later Bronze Age migration and cultural shift were instead driven by male migration, potentially connected to new technology and conquest.


Genetics | 2015

Beyond 2/3 and 1/3: The Complex Signatures of Sex-Biased Admixture on the X Chromosome

Amy Goldberg; Noah A. Rosenberg

Sex-biased demography, in which parameters governing migration and population size differ between females and males, has been studied through comparisons of X chromosomes, which are inherited sex-specifically, and autosomes, which are not. A common form of sex bias in humans is sex-biased admixture, in which at least one of the source populations differs in its proportions of females and males contributing to an admixed population. Studies of sex-biased admixture often examine the mean ancestry for markers on the X chromosome in relation to the autosomes. A simple framework noting that in a population with equally many females and males, two-thirds of X chromosomes appear in females, suggests that the mean X-chromosomal admixture fraction is a linear combination of female and male admixture parameters, with coefficients 2/3 and 1/3, respectively. Extending a mechanistic admixture model to accommodate the X chromosome, we demonstrate that this prediction is not generally true in admixture models, although it holds in the limit for an admixture process occurring as a single event. For a model with constant ongoing admixture, we determine the mean X-chromosomal admixture, comparing admixture on female and male X chromosomes to corresponding autosomal values. Surprisingly, in reanalyzing African-American genetic data to estimate sex-specific contributions from African and European sources, we find that the range of contributions compatible with the excess African ancestry on the X chromosome compared to autosomes has a wide spread, permitting scenarios either without male-biased contributions from Europe or without female-biased contributions from Africa.


Genetics | 2014

Autosomal Admixture Levels Are Informative About Sex Bias in Admixed Populations

Amy Goldberg; Paul Verdu; Noah A. Rosenberg

Sex-biased admixture has been observed in a wide variety of admixed populations. Genetic variation in sex chromosomes and functions of quantities computed from sex chromosomes and autosomes have often been examined to infer patterns of sex-biased admixture, typically using statistical approaches that do not mechanistically model the complexity of a sex-specific history of admixture. Here, expanding on a model of Verdu and Rosenberg (2011) that did not include sex specificity, we develop a model that mechanistically examines sex-specific admixture histories. Under the model, multiple source populations contribute to an admixed population, potentially with their male and female contributions varying over time. In an admixed population descended from two source groups, we derive the moments of the distribution of the autosomal admixture fraction from a specific source population as a function of sex-specific introgression parameters and time. Considering admixture processes that are constant in time, we demonstrate that surprisingly, although the mean autosomal admixture fraction from a specific source population does not reveal a sex bias in the admixture history, the variance of autosomal admixture is informative about sex bias. Specifically, the long-term variance decreases as the sex bias from a contributing source population increases. This result can be viewed as analogous to the reduction in effective population size for populations with an unequal number of breeding males and females. Our approach suggests that it may be possible to use the effect of sex-biased admixture on autosomal DNA to assist with methods for inference of the history of complex sex-biased admixture processes.


Nature | 2018

137 ancient human genomes from across the Eurasian steppes

Peter de Barros Damgaard; Nina Marchi; Simon Rasmussen; Michaël Peyrot; Gabriel Renaud; Thorfinn Sand Korneliussen; J. Víctor Moreno-Mayar; Mikkel Winther Pedersen; Amy Goldberg; Emma Usmanova; Nurbol Baimukhanov; Valeriy Loman; Lotte Hedeager; Anders Gorm Pedersen; Kasper Nielsen; Gennady Afanasiev; Kunbolot Akmatov; Almaz Aldashev; Ashyk Alpaslan; Gabit Baimbetov; Vladimir I. Bazaliiskii; Arman Beisenov; Bazartseren Boldbaatar; Bazartseren Boldgiv; Choduraa Dorzhu; Sturla Ellingvag; Diimaajav Erdenebaatar; Rana Dajani; Evgeniy Dmitriev; Valeriy Evdokimov

For thousands of years the Eurasian steppes have been a centre of human migrations and cultural change. Here we sequence the genomes of 137 ancient humans (about 1× average coverage), covering a period of 4,000 years, to understand the population history of the Eurasian steppes after the Bronze Age migrations. We find that the genetics of the Scythian groups that dominated the Eurasian steppes throughout the Iron Age were highly structured, with diverse origins comprising Late Bronze Age herders, European farmers and southern Siberian hunter-gatherers. Later, Scythians admixed with the eastern steppe nomads who formed the Xiongnu confederations, and moved westward in about the second or third century bc, forming the Hun traditions in the fourth–fifth century ad, and carrying with them plague that was basal to the Justinian plague. These nomads were further admixed with East Asian groups during several short-term khanates in the Medieval period. These historical events transformed the Eurasian steppes from being inhabited by Indo-European speakers of largely West Eurasian ancestry to the mostly Turkic-speaking groups of the present day, who are primarily of East Asian ancestry.Sequences of 137 ancient and 502 modern human genomes illuminate the population history of the Eurasian steppes after the Bronze Age and document the replacement of Indo-European speakers of West Eurasian ancestry by Turkic-speaking groups of East Asian ancestry.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Reply to Lazaridis and Reich: Robust model-based inference of male-biased admixture during Bronze Age migration from the Pontic-Caspian Steppe

Amy Goldberg; Torsten Günther; Noah A. Rosenberg; Mattias Jakobsson

By comparing the sex-specifically inherited X chromosome to the autosomes in ancient genetic samples, we (1) studied sex-specific admixture for two prehistoric migrations. For each migration we used several admixture estimation procedures—including ADMIXTURE model-based clustering (2)—to compare X-chromosomal and autosomal ancestry in contemporaneous Central Europeans and we interpreted greater admixture from the migrating population on the autosomes as male-biased migration. For migration into late Neolithic/Bronze Age Central Europeans (BA) from the Pontic-Caspian Steppe (SP) we inferred male-biased admixture at 5–14 males per migrating female. Lazaridis and Reich (3) contest this male-biased migration claim. For simulated individuals, they claim that ADMIXTURE provides biased X-chromosomal ancestry estimates. They argue that if the bias is taken into account, then X-chromosomal steppe ancestry is similar to our autosomal ancestry estimate, and that hence steppe male and female contributions are similar. Many factors affect ancestry inferences from ADMIXTURE and related programs (2, 4⇓⇓⇓–8). To understand ADMIXTURE inferences for X-chromosomal ancient DNA, we performed simulations examining the effects of multiple variables. First, we used “reference” individuals in ref. 1 to simulate … [↵][1]1To whom correspondence should be addressed. Email: mattias.jakobsson{at}ebc.uu.se. [1]: #xref-corresp-1-1


American Journal of Physical Anthropology | 2016

Better together: Thinking anthropologically about genetics.

Bridget F. B. Algee-Hewitt; Amy Goldberg

What are the effects that genetics has had on Anthropological research and how can we think anthropologically about Genetics? Just as genetic data have encouraged new hypotheses about human phenotypic variation, evolutionary history, population interaction, and environmental effects, so too has Anthropology offered to genetic studies a new interpretive locus in its history and perspective. This introduction examines how the fields of Anthropology and Genetics have arrived at a crucial moment at which their interaction requires careful examination and critical reflection. The papers discussed here exemplify how we may engage in such a trans-disciplinary conversation. They speak to the future of thoughtful interaction between genetic and anthropological literature and seek a new integration that embodies the holism of the human biological sciences.


Human Heredity | 2016

Consanguinity Rates Predict Long Runs of Homozygosity in Jewish Populations

Jonathan T. L. Kang; Amy Goldberg; Michael D. Edge; Doron M. Behar; Noah A. Rosenberg

Objectives: Recent studies have highlighted the potential of analyses of genomic sharing to produce insight into the demographic processes affecting human populations. We study runs of homozygosity (ROH) in 18 Jewish populations, examining these groups in relation to 123 non-Jewish populations sampled worldwide. Methods: By sorting ROH into 3 length classes (short, intermediate, and long), we evaluate the impact of demographic processes on genomic patterns in Jewish populations. Results: We find that the portion of the genome appearing in long ROH - the length class most directly related to recent consanguinity - closely accords with data gathered from interviews during the 1950s on frequencies of consanguineous unions in various Jewish groups. Conclusion: The high correlation between 1950s consanguinity levels and coverage by long ROH explains differences across populations in ROH patterns. The dissection of ROH into length classes and the comparison to consanguinity data assist in understanding a number of additional phenomena, including similarities of Jewish populations to Middle Eastern, European, and Central and South Asian non-Jewish populations in short ROH patterns, relative lengths of identity-by-descent tracts in different Jewish groups, and the “population isolate” status of the Ashkenazi Jews.


bioRxiv | 2016

Familial migration of the Neolithic contrasts massive male migration during Bronze Age in Europe inferred from ancient X chromosomes

Amy Goldberg; Torsten Günther; Noah A. Rosenberg; Mattias Jakobsson

Dramatic events in human prehistory, such as the spread of agriculture to Europe from Anatolia and the Late Neolithic/Bronze Age (LNBA) migration from the Pontic-Caspian steppe, can be investigated using patterns of genetic variation among the people that lived in those times. In particular, studies of differing female and male demographic histories on the basis of ancient genomes can provide information about complexities of social structures and cultural interactions in prehistoric populations. We use a mechanistic admixture model to compare the sex-specifically-inherited X chromosome to the autosomes in 20 early Neolithic and 16 LNBA human remains. Contrary to previous hypotheses suggested by the patrilocality of many agricultural populations, we find no evidence of sex-biased admixture during the migration that spread farming across Europe during the early Neolithic. For later migrations from the Pontic steppe during the LNBA, however, we estimate a dramatic male bias, with ~5-14 migrating males for every migrating female. We find evidence of ongoing, primarily male, migration from the steppe to central Europe over a period of multiple generations, with a level of sex bias that excludes a pulse migration during a single generation. The contrasting patterns of sex-specific migration during these two migrations suggest a view of differing cultural histories in which the Neolithic transition was driven by mass migration of both males and females in roughly equal numbers, perhaps whole families, whereas the later Bronze Age migration and cultural shift were instead driven by male migration, potentially connected to new technology and conquest.


Nature | 2018

Author Correction: 137 ancient human genomes from across the Eurasian steppes

Peter de Barros Damgaard; Nina Marchi; Simon Rasmussen; Michaël Peyrot; Gabriel Renaud; Thorfinn Sand Korneliussen; J. Víctor Moreno-Mayar; Mikkel Winther Pedersen; Amy Goldberg; Emma Usmanova; Nurbol Baimukhanov; Valeriy Loman; Lotte Hedeager; Anders Gorm Pedersen; Kasper Nielsen; Gennady Afanasiev; Kunbolot Akmatov; Almaz Aldashev; Ashyk Alpaslan; Gabit Baimbetov; Vladimir I. Bazaliiskii; Arman Beisenov; Bazartseren Boldbaatar; Bazartseren Boldgiv; Choduraa Dorzhu; Sturla Ellingvag; Diimaajav Erdenebaatar; Rana Dajani; Evgeniy Dmitriev; Valeriy Evdokimov

with In this Article, Angela M. Taravella and Melissa A. Wilson Sayres have been added to the author list (associated with: School of Life Sciences, Center for Evolution and Medicine, The Biodesign Institute, Arizona State University, Tempe, AZ, USA). The author list and Author Information section have been corrected online.

Collaboration


Dive into the Amy Goldberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Almaz Aldashev

National Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anders Gorm Pedersen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Kasper Nielsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon Rasmussen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge