Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alexis M. Mychajliw is active.

Publication


Featured researches published by Alexis M. Mychajliw.


Nature | 2016

Post-invasion demography of prehistoric humans in South America

Amy Goldberg; Alexis M. Mychajliw; Elizabeth A. Hadly

As the last habitable continent colonized by humans, the site of multiple domestication hotspots, and the location of the largest Pleistocene megafaunal extinction, South America is central to human prehistory. Yet remarkably little is known about human population dynamics during colonization, subsequent expansions, and domestication. Here we reconstruct the spatiotemporal patterns of human population growth in South America using a newly aggregated database of 1,147 archaeological sites and 5,464 calibrated radiocarbon dates spanning fourteen thousand to two thousand years ago (ka). We demonstrate that, rather than a steady exponential expansion, the demographic history of South Americans is characterized by two distinct phases. First, humans spread rapidly throughout the continent, but remained at low population sizes for 8,000 years, including a 4,000-year period of ‘boom-and-bust’ oscillations with no net growth. Supplementation of hunting with domesticated crops and animals had a minimal impact on population carrying capacity. Only with widespread sedentism, beginning ~5 ka, did a second demographic phase begin, with evidence for exponential population growth in cultural hotspots, characteristic of the Neolithic transition worldwide. The unique extent of humanity’s ability to modify its environment to markedly increase carrying capacity in South America is therefore an unexpectedly recent phenomenon.


Science | 2017

Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems

Anthony D. Barnosky; Elizabeth A. Hadly; Patrick Gonzalez; Jason J. Head; P. David Polly; A. Michelle Lawing; Jussi T. Eronen; David D. Ackerly; Ken Alex; Eric Biber; Jessica L. Blois; Justin S. Brashares; Gerardo Ceballos; Edward Byrd Davis; Gregory P. Dietl; Rodolfo Dirzo; Holly Doremus; Mikael Fortelius; Harry W. Greene; Jessica J. Hellmann; Thomas Hickler; Stephen T. Jackson; Melissa E. Kemp; Paul L. Koch; Claire Kremen; Emily L. Lindsey; Cindy V. Looy; Charles R. Marshall; Chase D. Mendenhall; Andreas Mulch

Looking back to move forward The current impacts of humanity on nature are rapid and destructive, but species turnover and change have occurred throughout the history of life. Although there is much debate about the best approaches to take in conservation, ultimately, we need to permit or enhance the resilience of natural systems so that they can continue to adapt and function into the future. In a Review, Barnosky et al. argue that the best way to do this is to look back at paleontological history as a way to understand how ecological resilience is maintained, even in the face of change. Science, this issue p. eaah4787 BACKGROUND The pace and magnitude of human-caused global change has accelerated dramatically over the past 50 years, overwhelming the capacity of many ecosystems and species to maintain themselves as they have under the more stable conditions that prevailed for at least 11,000 years. The next few decades threaten even more rapid transformations because by 2050, the human population is projected to grow by 3 billion while simultaneously increasing per capita consumption. Thus, to avoid losing many species and the crucial aspects of ecosystems that we need—for both our physical and emotional well-being—new conservation paradigms and integration of information from conservation biology, paleobiology, and the Earth sciences are required. ADVANCES Rather than attempting to hold ecosystems to an idealized conception of the past, as has been the prevailing conservation paradigm until recently, maintaining vibrant ecosystems for the future now requires new approaches that use both historical and novel conservation landscapes, enhance adaptive capacity for ecosystems and organisms, facilitate connectedness, and manage ecosystems for functional integrity rather than focusing entirely on particular species. Scientific breakthroughs needed to underpin such a paradigm shift are emerging at the intersection of ecology and paleobiology, revealing (i) which species and ecosystems will need human intervention to persist; (ii) how to foster population connectivity that anticipates rapidly changing climate and land use; (iii) functional attributes that characterize ecosystems through thousands to millions of years, irrespective of the species that are involved; and (iv) the range of compositional and functional variation that ecosystems have exhibited over their long histories. Such information is necessary for recognizing which current changes foretell transitions to less robust ecological states and which changes may signal benign ecosystem shifts that will cause no substantial loss of ecosystem function or services. Conservation success will also increasingly hinge on choosing among different, sometimes mutually exclusive approaches to best achieve three conceptually distinct goals: maximizing biodiversity, maximizing ecosystem services, and preserving wilderness. These goals vary in applicability depending on whether historical or novel ecosystems are the conservation target. Tradeoffs already occur—for example, managing to maximize certain ecosystem services upon which people depend (such as food production on farm or rangelands) versus maintaining healthy populations of vulnerable species (such as wolves, lions, or elephants). In the future, the choices will be starker, likely involving decisions such as which species are candidates for managed relocation and to which areas, and whether certain areas should be off limits for intensive management, even if it means losing some species that now live there. Developing the capacity to make those choices will require conservation in both historical and novel ecosystems and effective collaboration of scientists, governmental officials, nongovernmental organizations, the legal community, and other stakeholders. OUTLOOK Conservation efforts are currently in a state of transition, with active debate about the relative importance of preserving historical landscapes with minimal human impact on one end of the ideological spectrum versus manipulating novel ecosystems that result from human activities on the other. Although the two approaches are often presented as dichotomous, in fact they are connected by a continuum of practices, and both are needed. In most landscapes, maximizing conservation success will require more integration of paleobiology and conservation biology because in a rapidly changing world, a long-term perspective (encompassing at least millennia) is necessary to specify and select appropriate conservation targets and plans. Although adding this long-term perspective will be essential to sustain biodiversity and all of the facets of nature that humans need as we continue to rapidly change the world over the next few decades, maximizing the chances of success will also require dealing with the root causes of the conservation crisis: rapid growth of the human population, increasing per capita consumption especially in developed countries, and anthropogenic climate change that is rapidly pushing habitats outside the bounds experienced by today’s species. Fewer than 900 mountain gorillas are left in the world, and their continued existence depends upon the choices humans make, exemplifying the state of many species and ecosystems. Can conservation biology save biodiversity and all the aspects of nature that people need and value as 3 billion more of us are added to the planet by 2050, while climate continues to change to states outside the bounds that most of today’s ecosystems have ever experienced? Photo: E. A. Hadly, at Volcanoes National Park, Rwanda Conservation of species and ecosystems is increasingly difficult because anthropogenic impacts are pervasive and accelerating. Under this rapid global change, maximizing conservation success requires a paradigm shift from maintaining ecosystems in idealized past states toward facilitating their adaptive and functional capacities, even as species ebb and flow individually. Developing effective strategies under this new paradigm will require deeper understanding of the long-term dynamics that govern ecosystem persistence and reconciliation of conflicts among approaches to conserving historical versus novel ecosystems. Integrating emerging information from conservation biology, paleobiology, and the Earth sciences is an important step forward on the path to success. Maintaining nature in all its aspects will also entail immediately addressing the overarching threats of growing human population, overconsumption, pollution, and climate change.


Biology Letters | 2016

The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands

S. Kathleen Lyons; Joshua H. Miller; Danielle Fraser; Felisa A. Smith; Alison G. Boyer; Emily L. Lindsey; Alexis M. Mychajliw

Understanding extinction drivers in a human-dominated world is necessary to preserve biodiversity. We provide an overview of Quaternary extinctions and compare mammalian extinction events on continents and islands after human arrival in system-specific prehistoric and historic contexts. We highlight the role of body size and life-history traits in these extinctions. We find a significant size-bias except for extinctions on small islands in historic times. Using phylogenetic regression and classification trees, we find that while life-history traits are poor predictors of historic extinctions, those associated with difficulty in responding quickly to perturbations, such as small litter size, are good predictors of prehistoric extinctions. Our results are consistent with the idea that prehistoric and historic extinctions form a single continuing event with the same likely primary driver, humans, but the diversity of impacts and affected faunas is much greater in historic extinctions.


Journal of Mammalogy | 2017

The extinction of Xenothrix mcgregori, Jamaica’s last monkey

Siobhán B. Cooke; Alexis M. Mychajliw; John Southon; Ross D. E. MacPhee

The Jamaican primate, Xenothrix mcgregori, regarded variously as either a pitheciid or a stem platyrrhine, was the terminal branch of a clade that likely entered the West Indies at least as early as the Early Miocene, although its lineage is represented by fossils of Quaternary age only. We present a new direct radiocarbon-based date of 1,477 ± 34 calibrated years before present (cal BP) for the last documented appearance of this species in the fossil record. We employed the Gaussian-resampled, inverse-weighted McInerny et al. (GRIWM) method to estimate the extinction date of X. mcgregori, based on the data presented here as well as 6 other dates derived from X. mcgregori sites. On this basis, we estimated a last occurrence ∼900 BP. The cause or causes of this extinction, as well as the many others that occurred in late Quaternary of the Greater Antilles, remain a matter of debate. The likeliest inference is that these losses were largely if not completely anthropogenically driven. Although many species and populations of primates are critically threatened today, the loss of X. mcgregori stands as the most recent species-level extinction within Anthropoidea corroborated by radiometric evidence.


The Anthropocene Review | 2015

Using the Anthropocene as a teaching, communication and community engagement opportunity

Alexis M. Mychajliw; Melissa E. Kemp; Elizabeth A. Hadly

Environmental challenges of the Anthropocene are synergistic and interdisciplinary, complicating the ability of scientists to effectively communicate to the public. This complexity illuminates the limitations of traditional Science, Technology, Engineering and Math (STEM) education, as students frequently have difficulty applying their coursework towards contextualizing the novel problems that accompany global change. We view these challenges as educational opportunities to prepare STEM students for the adaptive learning necessary in the Anthropocene. Through careful attention to course pedagogy, instructors can facilitate student learning about global change and science communication, and teach students to act as bridges across the science–policy gap. Here we discuss our university course, in which students translated The Scientific Consensus on Maintaining Humanity’s Life Support Systems in the 21st Century into a communication product, an ArcGIS Story Map entitled ‘Geographic Impacts of Global Change: Mapping the Stories of Californians’. Incorporating such real-world science translation into STEM education is critical for preparing our new generation of socially responsible scientists and citizens of the Anthropocene.


PLOS ONE | 2014

Genetics reveal the origin and timing of a cryptic insular introduction of muskrats in North America.

Alexis M. Mychajliw; Richard G. Harrison

The muskrat, Ondatra zibethicus, is a semiaquatic rodent native to North America that has become a highly successful invader across Europe, Asia, and South America. It can inflict ecological and economic damage on wetland systems outside of its native range. Anecdotal evidence suggests that, in the early 1900s, a population of muskrats was introduced to the Isles of Shoals archipelago, located within the Gulf of Maine, for the purposes of fur harvest. However, because muskrats are native to the northeastern coast of North America, their presence on the Isles of Shoals could be interpreted as part of the native range of the species, potentially obscuring management planning and biogeographic inferences. To investigate their introduced status and identify a historic source population, muskrats from Appledore Island of the Isles of Shoals, and from the adjacent mainland of Maine and New Hampshire, were compared for mitochondrial cytochrome b sequences and allele frequencies at eight microsatellite loci. Appledore Island muskrats consistently exhibited reduced genetic diversity compared with mainland populations, and displayed signatures of a historic bottleneck. The distribution of mitochondrial haplotypes is suggestive of a New Hampshire source population. The data presented here are consistent with a human-mediated introduction that took place in the early 1900s. This scenario is further supported by the zooarchaeological record and island biogeographic patterns. This is the first genetic study of an introduced muskrat population within US borders and of any island muskrat population, and provides an important contrast with other studies of introduced muskrat populations worldwide.


Annual Review of Ecology, Evolution, and Systematics | 2017

Anthropogenic Extinction Dominates Holocene Declines of West Indian Mammals

Siobhán B. Cooke; Liliana M. Dávalos; Alexis M. Mychajliw; Samuel T. Turvey; Nathan S. Upham


Evolutionary Ecology Research | 2016

Opportunity for some, extinction for others: the fate of tetrapods in the Anthropocene

Katherine Solari; Hannah K. Frank; Luke O. Frishkoff; Jeremy L. Hsu; Melissa E. Kemp; Alexis M. Mychajliw; Elizabeth A. Hadly


The 85th Annual Meeting of the American Association of Physical Anthropologists, Atlanta, GA | 2016

Humans as a unique invasive species: growth and population size dynamics in prehistoric South America

Amy Goldberg; Alexis M. Mychajliw; Elizabeth A. Hadly


The 85th Annual Meeting of the American Association of Physical Anthropologists, Atlanta, GA | 2016

New primate femur from Pedernales Province, the Dominican Republic extends the range of Hispaniolan monkeys

Siobhán B. Cooke; Melissa Tallman; Alexis M. Mychajliw; Juan Almonte; Gerson Feliz

Collaboration


Dive into the Alexis M. Mychajliw's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siobhán B. Cooke

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge