Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy Gustafson is active.

Publication


Featured researches published by Amy Gustafson.


Nature | 2012

A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline

Thorlakur Jonsson; Jasvinder Atwal; Stacy Steinberg; Jon Snaedal; Palmi V. Jonsson; Sigurbjorn Bjornsson; Hreinn Stefansson; Patrick Sulem; Daniel F. Gudbjartsson; Janice Maloney; Kwame Hoyte; Amy Gustafson; Yichin Liu; Yanmei Lu; Tushar Bhangale; Robert R. Graham; Johanna Huttenlocher; Gyda Bjornsdottir; Ole A. Andreassen; Erik G. Jönsson; Aarno Palotie; Timothy W. Behrens; Olafur T. Magnusson; Augustine Kong; Unnur Thorsteinsdottir; Ryan J. Watts; Kari Stefansson

The prevalence of dementia in the Western world in people over the age of 60 has been estimated to be greater than 5%, about two-thirds of which are due to Alzheimer’s disease. The age-specific prevalence of Alzheimer’s disease nearly doubles every 5 years after age 65, leading to a prevalence of greater than 25% in those over the age of 90 (ref. 3). Here, to search for low-frequency variants in the amyloid-β precursor protein (APP) gene with a significant effect on the risk of Alzheimer’s disease, we studied coding variants in APP in a set of whole-genome sequence data from 1,795 Icelanders. We found a coding mutation (A673T) in the APP gene that protects against Alzheimer’s disease and cognitive decline in the elderly without Alzheimer’s disease. This substitution is adjacent to the aspartyl protease β-site in APP, and results in an approximately 40% reduction in the formation of amyloidogenic peptides in vitro. The strong protective effect of the A673T substitution against Alzheimer’s disease provides proof of principle for the hypothesis that reducing the β-cleavage of APP may protect against the disease. Furthermore, as the A673T allele also protects against cognitive decline in the elderly without Alzheimer’s disease, the two may be mediated through the same or similar mechanisms.


Journal of Biological Chemistry | 2014

Molecular Mechanisms of Alzheimer Disease Protection by the A673T Allele of Amyloid Precursor Protein

Janice Maloney; Travis W. Bainbridge; Amy Gustafson; Shuo Zhang; Roxanne Kyauk; Pascal Steiner; Marcel van der Brug; Yichin Liu; James A. Ernst; Ryan J. Watts; Jasvinder Atwal

Background: The A673T variant of the amyloid precursor protein (APP) protects against Alzheimer disease (AD). Results: A673T reduces BACE1 processing of APP by decreasing catalytic turnover and reduces amyloid-β(1–42) aggregation. Conclusion: A673T APP protects against AD primarily by reducing Aβ production and also by reducing aggregation. Significance: The biochemical nature of the A673T protective mutation provides insight into AD development. Pathogenic mutations in the amyloid precursor protein (APP) gene have been described as causing early onset familial Alzheimer disease (AD). We recently identified a rare APP variant encoding an alanine-to-threonine substitution at residue 673 (A673T) that confers protection against development of AD (Jonsson, T., Atwal, J. K., Steinberg, S., Snaedal, J., Jonsson, P. V., Bjornsson, S., Stefansson, H., Sulem, P., Gudbjartsson, D., Maloney, J., Hoyte, K., Gustafson, A., Liu, Y., Lu, Y., Bhangale, T., Graham, R. R., Huttenlocher, J., Bjornsdottir, G., Andreassen, O. A., Jönsson, E. G., Palotie, A., Behrens, T. W., Magnusson, O. T., Kong, A., Thorsteinsdottir, U., Watts, R. J., and Stefansson, K. (2012) Nature 488, 96–99). The Ala-673 residue lies within the β-secretase recognition sequence and is part of the amyloid-β (Aβ) peptide cleavage product (position 2 of Aβ). We previously demonstrated that the A673T substitution makes APP a less favorable substrate for cleavage by BACE1. In follow-up studies, we confirm that A673T APP shows reduced cleavage by BACE1 in transfected mouse primary neurons and in isogenic human induced pluripotent stem cell-derived neurons. Using a biochemical approach, we show that the A673T substitution modulates the catalytic turnover rate (Vmax) of APP by the BACE1 enzyme, without affecting the affinity (Km) of the APP substrate for BACE1. We also show a reduced level of Aβ(1–42) aggregation with A2T Aβ peptides, an observation not conserved in Aβ(1–40) peptides. When combined in a ratio of 1:9 Aβ(1–42)/Aβ(1–40) to mimic physiologically relevant mixtures, A2T retains a trend toward slowed aggregation kinetics. Microglial uptake of the mutant Aβ(1–42) peptides correlated with their aggregation level. Cytotoxicity of the mutant Aβ peptides was not dramatically altered. Taken together, our findings demonstrate that A673T, a protective allele of APP, reproducibly reduces amyloidogenic processing of APP and also mildly decreases Aβ aggregation. These effects could together have an additive or even synergistic impact on the risk of developing AD.


Nature Chemical Biology | 2016

An inhibitor of KDM5 demethylases reduces survival of drug-tolerant cancer cells

Maia Vinogradova; Victor S. Gehling; Amy Gustafson; Shilpi Arora; Charles Tindell; Catherine Wilson; Kaylyn E. Williamson; Gulfem D. Guler; Pranoti Gangurde; Wanda Manieri; Jennifer Busby; E. Megan Flynn; Fei Lan; Hyo-Jin Kim; Shobu Odate; Andrea G. Cochran; Yichin Liu; Matthew Wongchenko; Yibin Yang; Tommy K. Cheung; Tobias M. Maile; Ted Lau; Michael Costa; Ganapati V. Hegde; Erica Jackson; Robert M. Pitti; David Arnott; Christopher M. Bailey; Steve Bellon; Richard T. Cummings

The KDM5 family of histone demethylases catalyzes the demethylation of histone H3 on lysine 4 (H3K4) and is required for the survival of drug-tolerant persister cancer cells (DTPs). Here we report the discovery and characterization of the specific KDM5 inhibitor CPI-455. The crystal structure of KDM5A revealed the mechanism of inhibition of CPI-455 as well as the topological arrangements of protein domains that influence substrate binding. CPI-455 mediated KDM5 inhibition, elevated global levels of H3K4 trimethylation (H3K4me3) and decreased the number of DTPs in multiple cancer cell line models treated with standard chemotherapy or targeted agents. These findings show that pretreatment of cancer cells with a KDM5-specific inhibitor results in the ablation of a subpopulation of cancer cells that can serve as the founders for therapeutic relapse.


Neuron | 2016

Positive Allosteric Modulators of GluN2A-Containing NMDARs with Distinct Modes of Action and Impacts on Circuit Function

David H. Hackos; Patrick Lupardus; Teddy Grand; Yelin Chen; Tzu-Ming Wang; Paul Reynen; Amy Gustafson; Heidi J.A. Wallweber; Matthew Volgraf; Benjamin D. Sellers; Jacob B. Schwarz; Pierre Paoletti; Morgan Sheng; Qiang Zhou; Jesse E. Hanson

To enhance physiological function of NMDA receptors (NMDARs), we identified positive allosteric modulators (PAMs) of NMDARs with selectivity for GluN2A subunit-containing receptors. X-ray crystallography revealed a binding site at the GluN1-GluN2A dimer interface of the extracellular ligand-binding domains (LBDs). Despite the similarity between the LBDs of NMDARs and AMPA receptors (AMPARs), GluN2A PAMs with good selectivity against AMPARs were identified. Potentiation was observed with recombinant triheteromeric GluN1/GluN2A/GluN2B NMDARs and with synaptically activated NMDARs in brain slices from wild-type (WT), but not GluN2A knockout (KO), mice. Individual GluN2A PAMs exhibited variable degrees of glutamate (Glu) dependence, impact on NMDAR Glu EC50, and slowing of channel deactivation. These distinct PAMs also exhibited differential impacts during synaptic plasticity induction. The identification of a new NMDAR modulatory site and characterization of GluN2A-selective PAMs provide powerful molecular tools to dissect NMDAR function and demonstrate the feasibility of a therapeutically desirable type of NMDAR enhancement.


Journal of Medicinal Chemistry | 2016

Discovery of GluN2A-Selective NMDA Receptor Positive Allosteric Modulators (PAMs): Tuning Deactivation Kinetics via Structure-Based Design.

Matthew Volgraf; Benjamin D. Sellers; Yu Jiang; Guosheng Wu; Cuong Ly; Elisia Villemure; Richard Pastor; Po-wai Yuen; Aijun Lu; Xifeng Luo; Mingcui Liu; Shun Zhang; Liang Sun; Yuhong Fu; Patrick J. Lupardus; Heidi J.A. Wallweber; Bianca M. Liederer; Gauri Deshmukh; Emile Plise; Suzanne Tay; Paul Reynen; James B Herrington; Amy Gustafson; Yichin Liu; Akim Dirksen; Matthias G. A. Dietz; Yanzhou Liu; Tzu-Ming Wang; Jesse E. Hanson; David H. Hackos

The N-methyl-D-aspartate receptor (NMDAR) is a Na(+) and Ca(2+) permeable ionotropic glutamate receptor that is activated by the coagonists glycine and glutamate. NMDARs are critical to synaptic signaling and plasticity, and their dysfunction has been implicated in a number of neurological disorders, including schizophrenia, depression, and Alzheimers disease. Herein we describe the discovery of potent GluN2A-selective NMDAR positive allosteric modulators (PAMs) starting from a high-throughput screening hit. Using structure-based design, we sought to increase potency at the GluN2A subtype, while improving selectivity against related α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). The structure-activity relationship of channel deactivation kinetics was studied using a combination of electrophysiology and protein crystallography. Effective incorporation of these strategies resulted in the discovery of GNE-0723 (46), a highly potent and brain penetrant GluN2A-selective NMDAR PAM suitable for in vivo characterization.


Journal of Medicinal Chemistry | 2015

Discovery of Dual Leucine Zipper Kinase (DLK, MAP3K12) Inhibitors with Activity in Neurodegeneration Models

Snahel Patel; Fred E. Cohen; Brian Dean; Kelly De La Torre; Gauri Deshmukh; Anthony A. Estrada; Arundhati Sengupta Ghosh; Paul Gibbons; Amy Gustafson; Malcolm P. Huestis; Claire E. Le Pichon; Han Lin; Wendy Liu; Xingrong Liu; Yichin Liu; Cuong Ly; Joseph P. Lyssikatos; Changyou Ma; Kimberly Scearce-Levie; Young G. Shin; Hilda Solanoy; Kimberly L. Stark; Jian Wang; Bei Wang; Xianrui Zhao; Joseph W. Lewcock; Michael Siu

Dual leucine zipper kinase (DLK, MAP3K12) was recently identified as an essential regulator of neuronal degeneration in multiple contexts. Here we describe the generation of potent and selective DLK inhibitors starting from a high-throughput screening hit. Using proposed hinge-binding interactions to infer a binding mode and specific design parameters to optimize for CNS druglike molecules, we came to focus on the di(pyridin-2-yl)amines because of their combination of desirable potency and good brain penetration following oral dosing. Our lead inhibitor GNE-3511 (26) displayed concentration-dependent protection of neurons from degeneration in vitro and demonstrated dose-dependent activity in two different animal models of disease. These results suggest that specific pharmacological inhibition of DLK may have therapeutic potential in multiple indications.


Science Translational Medicine | 2017

Loss of dual leucine zipper kinase signaling is protective in animal models of neurodegenerative disease

Claire E. Le Pichon; William J. Meilandt; Sara L. Dominguez; Hilda Solanoy; Han Lin; Hai Ngu; Alvin Gogineni; Arundhati Sengupta Ghosh; Zhiyu Jiang; Seung-Hye Lee; Janice Maloney; Vineela D. Gandham; Christine D. Pozniak; Bei Wang; Sebum Lee; Michael Siu; Snahel Patel; Zora Modrusan; Xingrong Liu; York Rudhard; Miriam Baca; Amy Gustafson; Josh Kaminker; Richard A. D. Carano; Eric J. Huang; Oded Foreman; Robby M. Weimer; Kimberly Scearce-Levie; Joseph W. Lewcock

Blocking dual leucine zipper kinase slows disease progression in animal models of ALS and Alzheimer’s disease. A new therapeutic target zips into view The genetics, pathology, and clinical manifestations of chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), are heterogeneous, which has made the development and testing of candidate therapeutics difficult. Here, Le Pichon et al. identify dual leucine zipper kinase (DLK) as a common regulator of neuronal degeneration in mouse models of ALS and Alzheimer’s disease and in human patient postmortem brain tissue. Deletion of DLK or treatment with a DLK inhibitor resulted in neuronal protection and slowing of disease progression after diverse insults in several mouse models of neurodegenerative disease. This suggests that DLK may have broad applicability as a therapeutic target for the treatment of a number of neurodegenerative diseases. Hallmarks of chronic neurodegenerative disease include progressive synaptic loss and neuronal cell death, yet the cellular pathways that underlie these processes remain largely undefined. We provide evidence that dual leucine zipper kinase (DLK) is an essential regulator of the progressive neurodegeneration that occurs in amyotrophic lateral sclerosis and Alzheimer’s disease. We demonstrate that DLK/c-Jun N-terminal kinase signaling was increased in mouse models and human patients with these disorders and that genetic deletion of DLK protected against axon degeneration, neuronal loss, and functional decline in vivo. Furthermore, pharmacological inhibition of DLK activity was sufficient to attenuate the neuronal stress response and to provide functional benefit even in the presence of ongoing disease. These findings demonstrate that pathological activation of DLK is a conserved mechanism that regulates neurodegeneration and suggest that DLK inhibition may be a potential approach to treat multiple neurodegenerative diseases.


Bioorganic & Medicinal Chemistry Letters | 2016

Identification of potent, selective KDM5 inhibitors

Victor S. Gehling; Steven Bellon; Jean-Christophe Harmange; Yves Leblanc; Florence Poy; Shobu Odate; Shane Buker; Fei Lan; Shilpi Arora; Kaylyn E. Williamson; Peter Sandy; Richard T. Cummings; Christopher M. Bailey; Louise Bergeron; Weifeng Mao; Amy Gustafson; Yichin Liu; Erica VanderPorten; James E. Audia; Patrick Trojer; Brian K. Albrecht

This communication describes the identification and optimization of a series of pan-KDM5 inhibitors derived from compound 1, a hit initially identified against KDM4C. Compound 1 was optimized to afford compound 20, a 10nM inhibitor of KDM5A. Compound 20 is highly selective for the KDM5 enzymes versus other histone lysine demethylases and demonstrates activity in a cellular assay measuring the increase in global histone 3 lysine 4 tri-methylation (H3K4me3). In addition compound 20 has good ADME properties, excellent mouse PK, and is a suitable starting point for further optimization.


Bioorganic & Medicinal Chemistry Letters | 2016

Lead optimization of a pyrazolo[1,5-a]pyrimidin-7(4H)-one scaffold to identify potent, selective and orally bioavailable KDM5 inhibitors suitable for in vivo biological studies.

Jun Liang; Birong Zhang; Sharada Labadie; Daniel F. Ortwine; Maia Vinogradova; James R. Kiefer; Victor S. Gehling; Jean-Christophe Harmange; Richard D. Cummings; Tommy Lai; Jiangpeng Liao; Xiaoping Zheng; Yichin Liu; Amy Gustafson; Erica Van der Porten; Weifeng Mao; Bianca M. Liederer; Gauri Deshmukh; Marie Classon; Patrick Trojer; Peter S. Dragovich; Lesley J. Murray

Starting with a lead [1,5-a]pyrimidin-7(4H)-one-containing molecule (1), we generated potent, selective and orally bioavailable KDM5 inhibitors. Using structure- and property-based approaches, we designed 48 with improved cell potency (PC9 H3K4Me3 EC50=0.34μM). Furthermore, 48 maintained suitable physiochemical properties and displayed an excellent pharmacokinetic (PK) profile in mice. When dosed orally in mice at 50mg/kg twice a day (BID), 48 showed an unbound maximal plasma concentration (Cmax) >15-fold over its cell EC50, thereby providing a robust chemical probe for studying KDM5 biological functions in vivo.


Journal of Medicinal Chemistry | 2015

Scaffold-Hopping and Structure-Based Discovery of Potent, Selective, And Brain Penetrant N-(1H-Pyrazol-3-yl)pyridin-2-amine Inhibitors of Dual Leucine Zipper Kinase (DLK, MAP3K12).

Snahel Patel; Seth F. Harris; Paul Gibbons; Gauri Deshmukh; Amy Gustafson; T Kellar; Han Lin; Xingrong Liu; Yichin Liu; Changyou Ma; Kimberly Scearce-Levie; Arundhati Sengupta Ghosh; Young G. Shin; Hilda Solanoy; J Wang; Bei Wang; JianPing Yin; Michael Siu; Joseph W. Lewcock

Recent data suggest that inhibition of dual leucine zipper kinase (DLK, MAP3K12) has therapeutic potential for treatment of a number of indications ranging from acute neuronal injury to chronic neurodegenerative disease. Thus, high demand exists for selective small molecule DLK inhibitors with favorable drug-like properties and good CNS penetration. Herein we describe a shape-based scaffold hopping approach to convert pyrimidine 1 to a pyrazole core with improved physicochemical properties. We also present the first crystal structures of DLK. By utilizing a combination of property and structure-based design, we identified inhibitor 11, a potent, selective, and brain-penetrant inhibitor of DLK with activity in an in vivo nerve injury model.

Collaboration


Dive into the Amy Gustafson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Trojer

University of Medicine and Dentistry of New Jersey

View shared research outputs
Researchain Logo
Decentralizing Knowledge