Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin D. Sellers is active.

Publication


Featured researches published by Benjamin D. Sellers.


Neuron | 2016

Positive Allosteric Modulators of GluN2A-Containing NMDARs with Distinct Modes of Action and Impacts on Circuit Function

David H. Hackos; Patrick Lupardus; Teddy Grand; Yelin Chen; Tzu-Ming Wang; Paul Reynen; Amy Gustafson; Heidi J.A. Wallweber; Matthew Volgraf; Benjamin D. Sellers; Jacob B. Schwarz; Pierre Paoletti; Morgan Sheng; Qiang Zhou; Jesse E. Hanson

To enhance physiological function of NMDA receptors (NMDARs), we identified positive allosteric modulators (PAMs) of NMDARs with selectivity for GluN2A subunit-containing receptors. X-ray crystallography revealed a binding site at the GluN1-GluN2A dimer interface of the extracellular ligand-binding domains (LBDs). Despite the similarity between the LBDs of NMDARs and AMPA receptors (AMPARs), GluN2A PAMs with good selectivity against AMPARs were identified. Potentiation was observed with recombinant triheteromeric GluN1/GluN2A/GluN2B NMDARs and with synaptically activated NMDARs in brain slices from wild-type (WT), but not GluN2A knockout (KO), mice. Individual GluN2A PAMs exhibited variable degrees of glutamate (Glu) dependence, impact on NMDAR Glu EC50, and slowing of channel deactivation. These distinct PAMs also exhibited differential impacts during synaptic plasticity induction. The identification of a new NMDAR modulatory site and characterization of GluN2A-selective PAMs provide powerful molecular tools to dissect NMDAR function and demonstrate the feasibility of a therapeutically desirable type of NMDAR enhancement.


Journal of Medicinal Chemistry | 2016

Discovery of GluN2A-Selective NMDA Receptor Positive Allosteric Modulators (PAMs): Tuning Deactivation Kinetics via Structure-Based Design.

Matthew Volgraf; Benjamin D. Sellers; Yu Jiang; Guosheng Wu; Cuong Ly; Elisia Villemure; Richard Pastor; Po-wai Yuen; Aijun Lu; Xifeng Luo; Mingcui Liu; Shun Zhang; Liang Sun; Yuhong Fu; Patrick J. Lupardus; Heidi J.A. Wallweber; Bianca M. Liederer; Gauri Deshmukh; Emile Plise; Suzanne Tay; Paul Reynen; James B Herrington; Amy Gustafson; Yichin Liu; Akim Dirksen; Matthias G. A. Dietz; Yanzhou Liu; Tzu-Ming Wang; Jesse E. Hanson; David H. Hackos

The N-methyl-D-aspartate receptor (NMDAR) is a Na(+) and Ca(2+) permeable ionotropic glutamate receptor that is activated by the coagonists glycine and glutamate. NMDARs are critical to synaptic signaling and plasticity, and their dysfunction has been implicated in a number of neurological disorders, including schizophrenia, depression, and Alzheimers disease. Herein we describe the discovery of potent GluN2A-selective NMDAR positive allosteric modulators (PAMs) starting from a high-throughput screening hit. Using structure-based design, we sought to increase potency at the GluN2A subtype, while improving selectivity against related α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). The structure-activity relationship of channel deactivation kinetics was studied using a combination of electrophysiology and protein crystallography. Effective incorporation of these strategies resulted in the discovery of GNE-0723 (46), a highly potent and brain penetrant GluN2A-selective NMDAR PAM suitable for in vivo characterization.


Scientific Reports | 2017

Computationally Discovered Potentiating Role of Glycans on NMDA Receptors

Anton V. Sinitskiy; Nathaniel Stanley; David H. Hackos; Jesse E. Hanson; Benjamin D. Sellers; Vijay S. Pande

N-methyl-D-aspartate receptors (NMDARs) are glycoproteins in the brain central to learning and memory. The effects of glycosylation on the structure and dynamics of NMDARs are largely unknown. In this work, we use extensive molecular dynamics simulations of GluN1 and GluN2B ligand binding domains (LBDs) of NMDARs to investigate these effects. Our simulations predict that intra-domain interactions involving the glycan attached to residue GluN1-N440 stabilize closed-clamshell conformations of the GluN1 LBD. The glycan on GluN2B-N688 shows a similar, though weaker, effect. Based on these results, and assuming the transferability of the results of LBD simulations to the full receptor, we predict that glycans at GluN1-N440 might play a potentiator role in NMDARs. To validate this prediction, we perform electrophysiological analysis of full-length NMDARs with a glycosylation-preventing GluN1-N440Q mutation, and demonstrate an increase in the glycine EC50 value. Overall, our results suggest an intramolecular potentiating role of glycans on NMDA receptors.


Neuropharmacology | 2017

A novel NMDA receptor positive allosteric modulator that acts via the transmembrane domain

Tzu-Ming Wang; Brandon M. Brown; Lunbin Deng; Benjamin D. Sellers; Patrick Lupardus; Heidi J.A. Wallweber; Amy Gustafson; Evera Wong; Matthew Volgraf; Jacob B. Schwarz; David H. Hackos; Jesse E. Hanson

Ionotropic glutamate receptors (iGluRs) mediate fast excitatory neurotransmission and are key nervous system drug targets. While diverse pharmacological tools have yielded insight into iGluR extracellular domain function, less is known about molecular mechanisms underlying the ion conduction gating process within the transmembrane domain (TMD). We have discovered a novel NMDAR positive allosteric modulator (PAM), GNE-9278, with a unique binding site on the extracellular surface of the TMD. Mutation of a single residue near the Lurcher motif on GluN1 M3 can convert GNE-9278 modulation from positive to negative, and replacing three AMPAR pre-M1 residues with corresponding NMDAR residues can confer GNE-9278 sensitivity to AMPARs. Modulation by GNE-9278 is state-dependent and significantly alters extracellular domain pharmacology. The unique properties and structural determinants of GNE-9278 reveal new modulatory potential of the iGluR TMD.


Journal of Chemical Information and Modeling | 2017

A Comparison of Quantum and Molecular Mechanical Methods to Estimate Strain Energy in Druglike Fragments

Benjamin D. Sellers; Natalie C. James; Alberto Gobbi

Reducing internal strain energy in small molecules is critical for designing potent drugs. Quantum mechanical (QM) and molecular mechanical (MM) methods are often used to estimate these energies. In an effort to determine which methods offer an optimal balance in accuracy and performance, we have carried out torsion scan analyses on 62 fragments. We compared nine QM and four MM methods to reference energies calculated at a higher level of theory: CCSD(T)/CBS single point energies (coupled cluster with single, double, and perturbative triple excitations at the complete basis set limit) calculated on optimized geometries using MP2/6-311+G**. The results show that both the more recent MP2.X perturbation method as well as MP2/CBS perform quite well. In addition, combining a Hartree-Fock geometry optimization with a MP2/CBS single point energy calculation offers a fast and accurate compromise when dispersion is not a key energy component. Among MM methods, the OPLS3 force field accurately reproduces CCSD(T)/CBS torsion energies on more test cases than the MMFF94s or Amber12:EHT force fields, which struggle with aryl-amide and aryl-aryl torsions. Using experimental conformations from the Cambridge Structural Database, we highlight three example structures for which OPLS3 significantly overestimates the strain. The energies and conformations presented should enable scientists to estimate the expected error for the methods described and we hope will spur further research into QM and MM methods.


ACS Medicinal Chemistry Letters | 2017

GluN2A-Selective Pyridopyrimidinone Series of NMDAR Positive Allosteric Modulators with an Improved in Vivo Profile

Elisia Villemure; Matthew Volgraf; Yu Jiang; Guosheng Wu; Cuong Ly; Po-wai Yuen; Aijun Lu; Xifeng Luo; Mingcui Liu; Shun Zhang; Patrick J. Lupardus; Heidi J.A. Wallweber; Bianca M. Liederer; Gauri Deshmukh; Emile Plise; Suzanne Tay; Tzu-Ming Wang; Jesse E. Hanson; David H. Hackos; Kimberly Scearce-Levie; Jacob Bradley Schwarz; Benjamin D. Sellers

The N-methyl-d-aspartate receptor (NMDAR) is an ionotropic glutamate receptor, gated by the endogenous coagonists glutamate and glycine, permeable to Ca2+ and Na+. NMDAR dysfunction is associated with numerous neurological and psychiatric disorders, including schizophrenia, depression, and Alzheimers disease. Recently, we have disclosed GNE-0723 (1), a GluN2A subunit-selective and brain-penetrant positive allosteric modulator (PAM) of NMDARs. This work highlights the discovery of a related pyridopyrimidinone core with distinct structure-activity relationships, despite the structural similarity to GNE-0723. GNE-5729 (13), a pyridopyrimidinone-based NMDAR PAM, was identified with both an improved pharmacokinetic profile and increased selectivity against AMPARs. We also include X-ray structure analysis and modeling to propose hypotheses for the activity and selectivity differences.


Journal of Cheminformatics | 2017

chemalot and chemalot_knime: Command line programs as workflow tools for drug discovery

Man-Ling Lee; Ignacio Aliagas; Jianwen A. Feng; Thomas R. Gabriel; T. J. O’Donnell; Benjamin D. Sellers; Bernd Wiswedel; Alberto Gobbi

BackgroundAnalyzing files containing chemical information is at the core of cheminformatics. Each analysis may require a unique workflow. This paper describes the chemalot and chemalot_knime open source packages. Chemalot is a set of command line programs with a wide range of functionalities for cheminformatics. The chemalot_knime package allows command line programs that read and write SD files from stdin and to stdout to be wrapped into KNIME nodes. The combination of chemalot and chemalot_knime not only facilitates the compilation and maintenance of sequences of command line programs but also allows KNIME workflows to take advantage of the compute power of a LINUX cluster.ResultsUse of the command line programs is demonstrated in three different workflow examples: (1) A workflow to create a data file with project-relevant data for structure–activity or property analysis and other type of investigations, (2) The creation of a quantitative structure–property-relationship model using the command line programs via KNIME nodes, and (3) The analysis of strain energy in small molecule ligand conformations from the Protein Data Bank database.ConclusionsThe chemalot and chemalot_knime packages provide lightweight and powerful tools for many tasks in cheminformatics. They are easily integrated with other open source and commercial command line tools and can be combined to build new and even more powerful tools. The chemalot_knime package facilitates the generation and maintenance of user-defined command line workflows, taking advantage of the graphical design capabilities in KNIME.Graphical abstractExample KNIME workflow with chemalot nodes and the corresponding command line pipe


ACS Medicinal Chemistry Letters | 2018

Aminoisoxazoles as potent inhibitors of tryptophan 2,3-dioxygenase 2 (TDO2)

Zhonghua Pei; Rohan Mendonca; Lewis Gazzard; Richard Pastor; Leanne Goon; Amy Gustafson; Erica VanderPorten; Georgia Hatzivassiliou; Kevin DeMent; Robert Cass; Po-wai Yuen; Yamin Zhang; Guosheng Wu; Xingyu Lin; Yichin Liu; Benjamin D. Sellers

Tryptophan 2,3-dioxygenase 2 (TDO2) catalyzes the conversion of tryptophan to the immunosuppressive metabolite kynurenine. TDO2 overexpression has been observed in a number of cancers; therefore, TDO inhibition may be a useful therapeutic intervention for cancers. We identified an aminoisoxazole series as potent TDO2 inhibitors from a high-throughput screen (HTS). An extensive medicinal chemistry effort revealed that both the amino group and the isoxazole moiety are important for TDO2 inhibitory activity. Computational modeling yielded a binding hypothesis and provided insight into the observed structure-activity relationships. The optimized compound 21 is a potent TDO2 inhibitor with modest selectivity over indolamine 2,3-dioxygenase 1 (IDO1) and with improved human whole blood stability.


Nature | 2018

Structural basis for dual-mode inhibition of the ABC transporter MsbA

Hoangdung Ho; Anh Miu; Mary Kate Alexander; Natalie K. Garcia; Angela Oh; Inna Zilberleyb; Mike Reichelt; Cary D. Austin; Christine Tam; Stephanie Shriver; Huiyong Hu; Sharada Labadie; Jun Liang; Lan Wang; Jian Wang; Yan Lu; Hans E. Purkey; John Quinn; Yvonne Franke; Kevin Clark; Maureen Beresini; Man-Wah Tan; Benjamin D. Sellers; Till Maurer; Michael F. T. Koehler; Aaron T. Wecksler; James R. Kiefer; Vishal Verma; Yiming Xu; Mireille Nishiyama


Archive | 2015

THIAZOLOPYRIMIDINONES AS MODULATORS OF NMDA RECEPTOR ACTIVITY

Yu Jiang; Guosheng Wu; Po-Wai Yuen; Elisia Villemure; Jacob Bradley Schwarz; Cuong Ly; Benjamin D. Sellers; Matthew Volgraf

Collaboration


Dive into the Benjamin D. Sellers's collaboration.

Researchain Logo
Decentralizing Knowledge