Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy Haskell is active.

Publication


Featured researches published by Amy Haskell.


American Journal of Pathology | 2002

Abnormalities in Pericytes on Blood Vessels and Endothelial Sprouts in Tumors

Shunichi Morikawa; Peter Baluk; Toshiyuki Kaidoh; Amy Haskell; Rakesh K. Jain; Donald M. McDonald

Endothelial cells of tumor vessels have well-documented alterations, but it is less clear whether pericytes on these vessels are abnormal or even absent. Here we report that alpha-smooth muscle actin (alpha-SMA) and desmin-immunoreactive pericytes were present on >97% of blood vessels viewed by confocal microscopy in 100-microm-thick sections of three different spontaneous or implanted tumors in mice. However, the cells had multiple abnormalities. Unlike pericytes on capillaries in normal pancreatic islets, which had desmin but not alpha-SMA immunoreactivity, pericytes on capillary-size vessels in insulinomas in RIP-Tag2 transgenic mice expressed both desmin and alpha-SMA. Furthermore, pericytes in RIP-Tag2 tumors, as well as those in MCa-IV breast carcinomas and Lewis lung carcinomas, had an abnormally loose association with endothelial cells and extended cytoplasmic processes deep into the tumor tissue. alpha-SMA-positive pericytes also covered 73% of endothelial sprouts in RIP-Tag2 tumors and 92% of sprouts in the other tumors. Indeed, pericyte sleeves were significantly longer than the CD31-immunoreactive endothelial cell sprouts themselves in all three types of tumors. All three tumors also contained alpha-SMA-positive myofibroblasts that resembled pericytes but were not associated with blood vessels. We conclude that pericytes are present on most tumor vessels but have multiple abnormalities, including altered expression of marker proteins. In contrast to some previous studies, the almost ubiquitous presence of pericytes on tumor vessels found in the present study may be attributed to our use of both desmin and alpha-SMA as markers and 100-microm-thick tissue sections. The association of pericytes with endothelial sprouts raises the possibility of an involvement in sprout growth or retraction in tumors.


American Journal of Pathology | 2004

Inhibition of Vascular Endothelial Growth Factor (VEGF) Signaling in Cancer Causes Loss of Endothelial Fenestrations, Regression of Tumor Vessels, and Appearance of Basement Membrane Ghosts

Tetsuichiro Inai; Michael R. Mancuso; Hiroya Hashizume; Fabienne Baffert; Amy Haskell; Peter Baluk; Dana Hu-Lowe; David R. Shalinsky; Gavin Thurston; George D. Yancopoulos; Donald M. McDonald

Angiogenesis inhibitors are receiving increased attention as cancer therapeutics, but little is known of the cellular effects of these inhibitors on tumor vessels. We sought to determine whether two agents, AG013736 and VEGF-Trap, that inhibit vascular endothelial growth factor (VEGF) signaling, merely stop angiogenesis or cause regression of existing tumor vessels. Here, we report that treatment with these inhibitors caused robust and early changes in endothelial cells, pericytes, and basement membrane of vessels in spontaneous islet-cell tumors of RIP-Tag2 transgenic mice and in subcutaneously implanted Lewis lung carcinomas. Strikingly, within 24 hours, endothelial fenestrations in RIP-Tag2 tumors disappeared, vascular sprouting was suppressed, and patency and blood flow ceased in some vessels. By 7 days, vascular density decreased more than 70%, and VEGFR-2 and VEGFR-3 expression was reduced in surviving endothelial cells. Vessels in Lewis lung tumors, which lacked endothelial fenestrations, showed less regression. In both tumors, pericytes did not degenerate to the same extent as endothelial cells, and those on surviving tumor vessels acquired a more normal phenotype. Vascular basement membrane persisted after endothelial cells degenerated, providing a ghost-like record of pretreatment vessel number and location and a potential scaffold for vessel regrowth. The potent anti-vascular action observed is evidence that VEGF signaling inhibitors do more than stop angiogenesis. Early loss of endothelial fenestrations in RIP-Tag2 tumors is a clue that vessel phenotype may be predictive of exceptional sensitivity to these inhibitors.


American Journal of Pathology | 2003

Abnormalities of Basement Membrane on Blood Vessels and Endothelial Sprouts in Tumors

Peter Baluk; Shunichi Morikawa; Amy Haskell; Michael R. Mancuso; Donald M. McDonald

Often described as incomplete or absent, the basement membrane of blood vessels in tumors has attracted renewed attention as a source of angiogenic and anti-angiogenic molecules, site of growth factor binding, participant in angiogenesis, and potential target in cancer therapy. This study evaluated the composition, extent, and structural integrity of the basement membrane on blood vessels in three mouse tumor models: spontaneous RIP-Tag2 pancreatic islet tumors, MCa-IV mammary carcinomas, and Lewis lung carcinomas. Tumor vessels were identified by immunohistochemical staining for the endothelial cell markers CD31, endoglin (CD105), vascular endothelial growth factor receptor-2, and integrin alpha5 (CD49e). Confocal microscopic studies revealed that basement membrane identified by type IV collagen immunoreactivity covered >99.9% of the surface of blood vessels in the three tumors, just as in normal pancreatic islets. Laminin, entactin/nidogen, and fibronectin immunoreactivities were similarly ubiquitous on tumor vessels. Holes in the basement membrane, found by analyzing 1- micro m confocal optical sections, were <2.5 micro m in diameter and involved only 0.03% of the vessel surface. Despite the extensive vessel coverage, the basement membrane had conspicuous structural abnormalities, including a loose association with endothelial cells and pericytes, broad extensions away from the vessel wall, and multiple layers visible by electron microscopy. Type IV collagen-immunoreactive sleeves were also present on endothelial sprouts, supporting the idea that basement membrane is present where sprouts grow and regress. These findings indicate that basement membrane covers most tumor vessels but has profound structural abnormalities, consistent with the dynamic nature of endothelial cells and pericytes in tumors.


Journal of Clinical Investigation | 1998

Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice.

Gavin Thurston; John Mclean; M Rizen; Peter Baluk; Amy Haskell; Thomas J. Murphy; Douglas Hanahan; Donald M. McDonald

This study sought to determine whether angiogenic blood vessels in disease models preferentially bind and internalize cationic liposomes injected intravenously. Angiogenesis was examined in pancreatic islet cell tumors of RIP-Tag2 transgenic mice and chronic airway inflammation in Mycoplasma pulmonis-infected C3H/HeNCr mice. For comparison, physiological angiogenesis was examined in normal mouse ovaries. We found that endothelial cells in all models avidly bound and internalized fluorescently labeled cationic liposomes (1,2-dioleoyl-3-trimethylammonium-propane [DOTAP]/cholesterol or dimethyldioctadecyl ammonium bromide [DDAB]/cholesterol) or liposome-DNA complexes. Confocal microscopic measurements showed that angiogenic endothelial cells averaged 15-33-fold more uptake than corresponding normal endothelial cells. Cationic liposome-DNA complexes were also avidly taken up, but anionic, neutral, or sterically stabilized neutral liposomes were not. Electron microscopic analysis showed that 32% of gold-labeled liposomes associated with tumor endothelial cells were adherent to the luminal surface, 53% were internalized into endosomes and multivesicular bodies, and 15% were extravascular 20 min after injection. Our findings indicate that angiogenic endothelial cells in these models avidly bind and internalize cationic liposomes and liposome-DNA complexes but not other types of liposomes. This preferential uptake raises the possibility of using cationic liposomes to target diagnostic or therapeutic agents selectively to angiogenic blood vessels in tumors and sites of chronic inflammation.


Journal of Neurocytology | 1988

Neurogenic inflammation in the rat trachea. II. Identity and distribution of nerves mediating the increase in vascular permeability

Donald M. McDonald; Robert A. Mitchell; Giorgio Gabella; Amy Haskell

SummaryThis study addresses the question of whether increased vascular permeability, which is a prominent feature of neurogenic inflammation in the respiratory tract, is mediated by sensory axons that end near venules in the airway mucosa. In these experiments, neurogenic inflammation was produced in the tracheal and bronchial mucosa of atropine-treated Long-Evans rats by electrical stimulation of the left or right superior laryngeal nerve and/or cervical vagus nerve. The particulate tracer Monastral blue was injected intravenously to localize the sites of increased vascular permeability, and microspectrophotometry was used to measure the amount of extravasated Monastral blue in the trachea and thereby quantify the increase in vascular permeability. In some rats, selective denervations were made to locate the cell bodies of neurons that mediate the increase in vascular permeability; in others, fluorescence immunohistochemistry and quantitative electron microscopic methods were used to determine which structures in the tracheal mucosa are innervated by these neurons. The study revealed that the vagally mediated increase in vascular permeability was sudden, transient (half-life=2.4 min) and restricted to venules. Stimulation of the left or right superior laryngeal nerve increased the permeability of venules in the extrathoracic trachea, whereas stimulation of either vagus nerve increased vascular permeability in the intrathoracic trachea and bronchi. All nerves had bilateral effects in the trachea, but the vagus nerves had largely unilateral effects in the bronchi. Neurons that mediated the increase in venular permeability had their cell bodies in the jugular (superior sensory) ganglion of the vagus nerve or rostral portion of the nodose (inferior sensory) ganglion. Preganglionic autonomic vagal neurons in the brain stem were not essential for this increase in venular permeability. Few nerves identifiable by substance P-immunohistochemistry or electron microscopy were located near the affected venules, and no nerves were within 1 μm of the walls of venules. However, the epithelium and arterioles of the airway mucosa were densely innervated. All intraepithelial nerves were within 0.1 μm of epithelial cells, and at least two-thirds of nerves near arterioles were within 1 μm of the vessel walls. We conclude that the increase in venular permeability associated with neurogenic inflammation in the trachea and bronchi of rats is mediated by sensory axons that travel in the vagus nerves and superior laryngeal nerves. We question whether tachykinins from the sensory nerves mediate the increase in vascular permeability through a direct action on venules, and raise the possibility that these nerves evoke the release from epithelial cells of mediators that contribute to the increase in vascular permeability.


Cancer Research | 2007

Sequential Loss of Tumor Vessel Pericytes and Endothelial Cells after Inhibition of Platelet-Derived Growth Factor B by Selective Aptamer AX102

Barbara Sennino; Beverly L. Falcon; Dilara McCauley; Tom Le; Thomas G. McCauley; Jeffrey Kurz; Amy Haskell; David M. Epstein; Donald M. McDonald

Inhibition of platelet derived growth factor (PDGF) can increase the efficacy of other cancer therapeutics, but the cellular mechanism is incompletely understood. We examined the cellular effects on tumor vasculature of a novel DNA oligonucleotide aptamer (AX102) that selectively binds PDGF-B. Treatment with AX102 led to progressive reduction of pericytes, identified by PDGF receptor beta, NG2, desmin, or alpha-smooth muscle actin immunoreactivity, in Lewis lung carcinomas. The decrease ranged from 35% at 2 days, 63% at 7 days, to 85% at 28 days. Most tumor vessels that lacked pericytes at 7 days subsequently regressed. Overall tumor vascularity decreased 79% over 28 days, without a corresponding decrease in tumor size. Regression of pericytes and endothelial cells led to empty basement membrane sleeves, which were visible at 7 days, but only 54% remained at 28 days. PDGF-B inhibition had a less pronounced effect on pancreatic islet tumors in RIP-Tag2 transgenic mice, where pericytes decreased 47%, vascularity decreased 38%, and basement membrane sleeves decreased 21% over 28 days. Taken together, these findings show that inhibition of PDGF-B signaling can lead to regression of tumor vessels, but the magnitude is tumor specific and does not necessarily retard tumor growth. Loss of pericytes in tumors is an expected direct consequence of PDGF-B blockade, but reduced tumor vascularity is likely to be secondary to pericyte regression.


American Journal of Pathology | 2004

Regulated Angiogenesis and Vascular Regression in Mice Overexpressing Vascular Endothelial Growth Factor in Airways

Peter Baluk; Chun Geun Lee; Holger Link; Erin Ator; Amy Haskell; Jack A. Elias; Donald M. McDonald

Angiogenesis and vascular remodeling occurs in many inflammatory diseases, including asthma. In this study, we determined the time course and reversibility of the angiogenesis and vascular remodeling produced by vascular endothelial growth factor (VEGF) in a tet-on inducible transgenic system driven by the CC10 promoter in airway epithelium. One day after switching on VEGF expression, endothelial sprouts arose from venules, grew toward the epithelium, and were abundant by 3 to 5 days. Vessel density reached twice baseline by 7 days. Many new vessels were significantly larger than normal, were fenestrated, and penetrated the epithelium. Despite their mature appearance at 7 days suggested by their pericyte coat and basement membrane, the new vessels started to regress within 3 days when VEGF was switched off, showing stasis and luminal occlusion, influx of inflammatory cells, and retraction and apoptosis of endothelial cells and pericytes. Vessel density returned to normal within 28 days after VEGF withdrawal. Our study showed the dynamic nature of airway angiogenesis and regression. Blood vessels can respond to VEGF by sprouting angiogenesis within a few days, but regress more slowly after VEGF withdrawal, and leave a historical record of their previous extent in the form of empty basement membrane sleeves.


Cancer Research | 2005

Mosaic tumor vessels : Cellular basis and ultrastructure of focal regions lacking endothelial cell markers

Emmanuelle di Tomaso; Diane E. Capen; Amy Haskell; Janet Hart; James Logie; Rakesh K. Jain; Donald M. McDonald; Rosemary Jones

Endothelial cells of blood vessels in tumors may be thin, fragile, and defective in barrier function. We found previously that the endothelium of vessels in human colon carcinoma xenografts in mice is a mosaic structure. Approximately 85% of tumor vessels have uniform CD31 and/or CD105 immunoreactivity, but the remainder have focal regions that lack these common endothelial markers. The present study assessed the ultrastructure of the vessel lining and the integrity of the basement membrane in these regions. Using immunolabeling and confocal microscopy, we identified blood vessels that lacked CD31 and CD105 immunoreactivity and then analyzed the ultrastructure of these vessels by transmission electron microscopy. Eleven percent of vessels in orthotopic tumors and 24% of vessels in ectopic tumors had defects in CD31 and CD105 staining measuring on average 10.8 microm (range, 1-41.2 microm). Ultrastructural studies identified endothelial cells at 92% of CD31- and CD105-negative sites in orthotopic tumors and 70% of the sites in ectopic tumors. Thus, most regions of tumor vessels that lack CD31 and CD105 immunoreactivity represent attenuated endothelial cells with abnormal expression of endothelial cell markers, but some are gaps between endothelial cells. More than 80% of the defects lacked immunoreactivity for multiple basement membrane proteins.


Anatomy and Embryology | 1989

Changes in epithelial secretory cells and potentiation of neurogenic inflammation in the trachea of rats with respiratory tract infections

Hung-Tu Huang; Amy Haskell; Donald M. McDonald

SummaryIn rats respiratory tract infections due to Sendai virus and coronavirus usually are transient, but they can have long-lasting consequences when accompanied by Mycoplasma pulmonis infections. Morphological alterations in the tracheal epithelium and a potentiation of the inflammatory response evoked by sensory nerve stimulation (“neurogenic inflammation”) are evident nine weeks after the infections begin, but the extent to which these changes are present at earlier times is not known. In the present study we characterized these abnormalities in the epithelium and determined the extent to which they are present 3 and 6 weeks after the infections begin. We also determined the magnitude of the potentiation of neurogenic inflammation at these times, whether the potentiation can be reversed by glucocorticoids, and whether a proliferation of blood vessels contributes to the abnormally large amount of plasma extravasation associated with this potentiation. To this end, we studied Long-Evans rats that acquired these viral and mycoplasmal infections from other rats. We found that the tracheal epithelium of the infected rats had ten times as many Alcian blue-PAS positive mucous cells as did that of pathogen-free rats; but it contained none of the serous cells typical of pathogen-free rats, so the total number of secretory cells was not increased. In addition, the epithelium of the infected rats had three times the number of ciliated cells and had only a third of the number of globule leukocytes. In response to an injection of capsaicin (150 μg/kg i.v.), the tracheas of the infected rats developed an abnormally large amount of extravasation of two tracers Evans blue dye and Monastral blue pigment, and had an abnormally large number of Monastral blue-labeled venules, particularly in regions of mucosa overlying the cartilaginous rings. This abnormally large amount of extravasation was blocked by dexamethasone (1 mg/day i.p. for 5 days). We conclude that M. pulmonis infections, exacerbated at the outset by viral infections, result within three weeks in the transformation of epithelial serous cells into mucous cells, the proliferation of ciliated cells, and the depletion of globule leukocytes. They also cause a proliferation of mediator-sensitive blood vessels in the airway mucosa, which is likely to contribute to the potentiation of neurogenic inflammation that accompanies these infections.


American Journal of Physiology-heart and Circulatory Physiology | 2006

VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature

Tomomi Kamba; Betty Y. Y. Tam; Hiroya Hashizume; Amy Haskell; Barbara Sennino; Michael R. Mancuso; Scott M. Norberg; Shaun O'Brien; Rachel B. Davis; Lori Gowen; Keith D. Anderson; Gavin Thurston; Shuji Joho; Matthew L. Springer; Calvin J. Kuo; Donald M. McDonald

Collaboration


Dive into the Amy Haskell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Baluk

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Mclean

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge