Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gavin Thurston is active.

Publication


Featured researches published by Gavin Thurston.


American Journal of Pathology | 2000

Openings between Defective Endothelial Cells Explain Tumor Vessel Leakiness

Hiroya Hashizume; Peter Baluk; Shunichi Morikawa; John Mclean; Gavin Thurston; Sylvie Roberge; Rakesh K. Jain; Donald M. McDonald

Leakiness of blood vessels in tumors may contribute to disease progression and is key to certain forms of cancer therapy, but the structural basis of the leakiness is unclear. We sought to determine whether endothelial gaps or transcellular holes, similar to those found in leaky vessels in inflammation, could explain the leakiness of tumor vessels. Blood vessels in MCa-IV mouse mammary carcinomas, which are known to be unusually leaky (functional pore size 1.2-2 microm), were compared to vessels in three less leaky tumors and normal mammary glands. Vessels were identified by their binding of intravascularly injected fluorescent cationic liposomes and Lycopersicon esculentum lectin and by CD31 (PECAM) immunoreactivity. The luminal surface of vessels in all four tumors had a defective endothelial monolayer as revealed by scanning electron microscopy. In MCa-IV tumors, 14% of the vessel surface was lined by poorly connected, overlapping cells. The most superficial lining cells, like endothelial cells, had CD31 immunoreactivity and fenestrae with diaphragms, but they had a branched phenotype with cytoplasmic projections as long as 50 microm. Some branched cells were separated by intercellular openings (mean diameter 1.7 microm; range, 0.3-4.7 microm). Transcellular holes (mean diameter 0.6 microm) were also present but were only 8% as numerous as intercellular openings. Some CD31-positive cells protruded into the vessel lumen; others sprouted into perivascular tumor tissue. Tumors in RIP-Tag2 mice had, in addition, tumor cell-lined lakes of extravasated erythrocytes. We conclude that some tumor vessels have a defective cellular lining composed of disorganized, loosely connected, branched, overlapping or sprouting endothelial cells. Openings between these cells contribute to tumor vessel leakiness and may permit access of macromolecular therapeutic agents to tumor cells.


Nature Medicine | 2000

Angiopoietin-1 protects the adult vasculature against plasma leakage.

Gavin Thurston; John S. Rudge; Ella Ioffe; Hao Zhou; Leorah Ross; Susan D. Croll; Nicole Glazer; Jocelyn Holash; Donald M. McDonald; George D. Yancopoulos

Pathological increases in vascular leakage lead to edema and swelling, causing serious problems in brain tumors, in diabetic retinopathy, after strokes, during sepsis and also in inflammatory conditions such as rheumatoid arthritis and asthma. Although many agents and disease processes increase vascular leakage, no known agent specifically makes vessels resistant to leaking. Vascular endothelial growth factor (VEGF) and the angiopoietins function together during vascular development, with VEGF acting early during vessel formation, and angiopoietin-1 acting later during vessel remodeling, maturation and stabilization. Although VEGF was initially called vascular permeability factor, there has been less focus on its permeability actions and more effort devoted to its involvement in vessel growth and applications in ischemia and cancer. Recent transgenic approaches have confirmed the profound permeability effects of VEGF (refs. 12–14), and have shown that transgenic angiopoietin-1 acts reciprocally as an anti-permeability factor when provided chronically during vessel formation, although it also profoundly affects vascular morphology when thus delivered. To be useful clinically, angiopoietin-1 would have to inhibit leakage when acutely administered to adult vessels, and this action would have to be uncoupled from its profound angiogenic capabilities. Here we show that acute administration of angiopoietin-1 does indeed protect adult vasculature from leaking, countering the potentially lethal actions of VEGF and inflammatory agents.


Nature | 2006

Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis

Irene Noguera-Troise; Christopher Daly; Nicholas J. Papadopoulos; Sandra Coetzee; Pat Boland; Nicholas W. Gale; Hsin Chieh Lin; George D. Yancopoulos; Gavin Thurston

Tumour growth requires accompanying expansion of the host vasculature, with tumour progression often correlated with vascular density. Vascular endothelial growth factor (VEGF) is the best-characterized inducer of tumour angiogenesis. We report that VEGF dynamically regulates tumour endothelial expression of Delta-like ligand 4 (Dll4), which was previously shown to be absolutely required for normal embryonic vascular development. To define Dll4 function in tumour angiogenesis, we manipulated this pathway in murine tumour models using several approaches. Here we show that blockade resulted in markedly increased tumour vascularity, associated with enhanced angiogenic sprouting and branching. Paradoxically, this increased vascularity was non-productive—as shown by poor perfusion and increased hypoxia, and most importantly, by decreased tumour growth—even for tumours resistant to anti-VEGF therapy. Thus, VEGF-induced Dll4 acts as a negative regulator of tumour angiogenesis; its blockade results in a striking uncoupling of tumour growth from vessel density, presenting a novel therapeutic approach even for tumours resistant to anti-VEGF therapies.


Developmental Cell | 2002

Angiopoietin-2 Is Required for Postnatal Angiogenesis and Lymphatic Patterning, and Only the Latter Role Is Rescued by Angiopoietin-1

Nicholas W. Gale; Gavin Thurston; Sean F. Hackett; Roumiana Renard; Quan Wang; Joyce McClain; Cliff Martin; Charles L. Witte; Marlys H. Witte; David G. Jackson; Chitra Suri; Peter A. Campochiaro; Stanley J. Wiegand; George D. Yancopoulos

VEGF and Angiopoietin-1 requisitely collaborate during blood vessel development. While Angiopoietin-1 obligately activates its Tie2 receptor, Angiopoietin-2 can activate Tie2 on some cells, while it blocks Tie2 activation on others. Our analysis of mice lacking Angiopoietin-2 reveals that Angiopoietin-2 is dispensable for embryonic vascular development but is requisite for subsequent angiogenic remodeling. Unexpectedly, mice lacking Angiopoietin-2 also exhibit major lymphatic vessel defects. Genetic rescue with Angiopoietin-1 corrects the lymphatic, but not the angiogenesis, defects, suggesting that Angiopoietin-2 acts as a Tie2 agonist in the former setting, but as an antagonist in the latter setting. Our studies define a vascular growth factor whose primary role is in postnatal angiogenic remodeling and also demonstrate that members of the VEGF and Angiopoietin families collaborate during development of the lymphatic vasculature.


Nature Reviews Molecular Cell Biology | 2009

Control of vascular morphogenesis and homeostasis through the angiopoietin - Tie system

Hellmut G. Augustin; Gou Young Koh; Gavin Thurston; Kari Alitalo

Angiogenesis, the growth of blood vessels, is a fundamental biological process that controls embryonic development and is also involved in numerous life-threatening human diseases. Much work in the field of angiogenesis research has centred on the vascular endothelial growth factor (VEGF)–VEGF receptor system. The Tie receptors and their angiopoietin (Ang) ligands have been identified as the second vascular tissue-specific receptor Tyr kinase system. Ang–Tie signalling is essential during embryonic vessel assembly and maturation, and functions as a key regulator of adult vascular homeostasis. The structural characteristics and the spatio-temporal regulation of the expression of receptors and ligands provide unique insights into the functions of this vascular signalling system.


Journal of Clinical Investigation | 2008

CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors

Sergey V. Shmelkov; Jason M. Butler; Andrea T. Hooper; Adília Hormigo; Jared S Kushner; Till Milde; Ryan St Clair; Muhamed Baljevic; Ian White; David K. Jin; Amy Chadburn; Andrew J. Murphy; David M. Valenzuela; Nicholas W. Gale; Gavin Thurston; George D. Yancopoulos; Michael I. D’Angelica; Nancy E. Kemeny; David Lyden; Shahin Rafii

Colon cancer stem cells are believed to originate from a rare population of putative CD133+ intestinal stem cells. Recent publications suggest that a small subset of colon cancer cells expresses CD133, and that only these CD133+ cancer cells are capable of tumor initiation. However, the precise contribution of CD133+ tumor-initiating cells in mediating colon cancer metastasis remains unknown. Therefore, to temporally and spatially track the expression of CD133 in adult mice and during tumorigenesis, we generated a knockin lacZ reporter mouse (CD133lacZ/+), in which the expression of lacZ is driven by the endogenous CD133 promoters. Using this model and immunostaining, we discovered that CD133 expression in colon is not restricted to stem cells; on the contrary, CD133 is ubiquitously expressed on differentiated colonic epithelium in both adult mice and humans. Using Il10-/-CD133lacZ mice, in which chronic inflammation in colon leads to adenocarcinomas, we demonstrated that CD133 is expressed on a full gamut of colonic tumor cells, which express epithelial cell adhesion molecule (EpCAM). Similarly, CD133 is widely expressed by human primary colon cancer epithelial cells, whereas the CD133- population is composed mostly of stromal and inflammatory cells. Conversely, CD133 expression does not identify the entire population of epithelial and tumor-initiating cells in human metastatic colon cancer. Indeed, both CD133+ and CD133- metastatic tumor subpopulations formed colonospheres in in vitro cultures and were capable of long-term tumorigenesis in a NOD/SCID serial xenotransplantation model. Moreover, metastatic CD133- cells form more aggressive tumors and express typical phenotypic markers of cancer-initiating cells, including CD44 (CD44+CD24-), whereas the CD133+ fraction is composed of CD44lowCD24+ cells. Collectively, our data suggest that CD133 expression is not restricted to intestinal stem or cancer-initiating cells, and during the metastatic transition, CD133+ tumor cells might give rise to the more aggressive CD133(- )subset, which is also capable of tumor initiation in NOD/SCID mice.


American Journal of Pathology | 2004

Inhibition of Vascular Endothelial Growth Factor (VEGF) Signaling in Cancer Causes Loss of Endothelial Fenestrations, Regression of Tumor Vessels, and Appearance of Basement Membrane Ghosts

Tetsuichiro Inai; Michael R. Mancuso; Hiroya Hashizume; Fabienne Baffert; Amy Haskell; Peter Baluk; Dana Hu-Lowe; David R. Shalinsky; Gavin Thurston; George D. Yancopoulos; Donald M. McDonald

Angiogenesis inhibitors are receiving increased attention as cancer therapeutics, but little is known of the cellular effects of these inhibitors on tumor vessels. We sought to determine whether two agents, AG013736 and VEGF-Trap, that inhibit vascular endothelial growth factor (VEGF) signaling, merely stop angiogenesis or cause regression of existing tumor vessels. Here, we report that treatment with these inhibitors caused robust and early changes in endothelial cells, pericytes, and basement membrane of vessels in spontaneous islet-cell tumors of RIP-Tag2 transgenic mice and in subcutaneously implanted Lewis lung carcinomas. Strikingly, within 24 hours, endothelial fenestrations in RIP-Tag2 tumors disappeared, vascular sprouting was suppressed, and patency and blood flow ceased in some vessels. By 7 days, vascular density decreased more than 70%, and VEGFR-2 and VEGFR-3 expression was reduced in surviving endothelial cells. Vessels in Lewis lung tumors, which lacked endothelial fenestrations, showed less regression. In both tumors, pericytes did not degenerate to the same extent as endothelial cells, and those on surviving tumor vessels acquired a more normal phenotype. Vascular basement membrane persisted after endothelial cells degenerated, providing a ghost-like record of pretreatment vessel number and location and a potential scaffold for vessel regrowth. The potent anti-vascular action observed is evidence that VEGF signaling inhibitors do more than stop angiogenesis. Early loss of endothelial fenestrations in RIP-Tag2 tumors is a clue that vessel phenotype may be predictive of exceptional sensitivity to these inhibitors.


Nature Medicine | 2006

Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation

Ulrike Fiedler; Yvonne Reiss; Marion Scharpfenecker; Verena Grunow; Stefanie Koidl; Gavin Thurston; Nicholas W. Gale; Martin Witzenrath; Simone Rosseau; Norbert Suttorp; Astrid Sobke; Matthias Herrmann; Klaus T. Preissner; Peter Vajkoczy; Hellmut G. Augustin

The angiopoietins Ang-1 and Ang-2 have been identified as ligands of the receptor tyrosine kinase Tie-2 (refs. 1,2). Paracrine Ang-1–mediated activation of Tie-2 acts as a regulator of vessel maturation and vascular quiescence. In turn, the antagonistic ligand Ang-2 acts by an autocrine mechanism and is stored in endothelial Weibel-Palade bodies from where it can be rapidly released upon stimulation. The rapid release of Ang-2 implies functions of the angiopoietin-Tie system beyond its established role during vascular morphogenesis as a regulator of rapid vascular responses. Here we show that mice deficient in Ang-2 (encoded by the gene Angpt2) cannot elicit an inflammatory response in thioglycollate-induced or Staphylococcus aureus–induced peritonitis, or in the dorsal skinfold chamber model. Recombinant Ang-2 restores the inflammation defect in Angpt2−/− mice. Intravital microscopy showed normal TNF-α–induced leukocyte rolling in the vasculature of Angpt2−/−mice, but rolling cells did not firmly adhere to activated endothelium. Cellular experiments showed that Ang-2 promotes adhesion by sensitizing endothelial cells toward TNF-α and modulating TNF-α–induced expression of endothelial cell adhesion molecules. Together, these findings identify Ang-2 as an autocrine regulator of endothelial cell inflammatory responses. Ang-2 thereby acts as a switch of vascular responsiveness exerting a permissive role for the activities of proinflammatory cytokines.


The EMBO Journal | 2001

Signalling via vascular endothelial growth factor receptor‐3 is sufficient for lymphangiogenesis in transgenic mice

Tanja Veikkola; Lotta Jussila; Taija Makinen; Terhi Karpanen; Michael Jeltsch; Tatiana V. Petrova; Hajime Kubo; Gavin Thurston; Donald M. McDonald; Marc G. Achen; Steven A. Stacker; Kari Alitalo

Vascular endothelial growth factor receptor‐3 (VEGFR‐3) has an essential role in the development of embryonic blood vessels; however, after midgestation its expression becomes restricted mainly to the developing lymphatic vessels. The VEGFR‐3 ligand VEGF‐C stimulates lymphangiogenesis in transgenic mice and in chick chorioallantoic membrane. As VEGF‐C also binds VEGFR‐2, which is expressed in lymphatic endothelia, it is not clear which receptors are responsible for the lymphangiogenic effects of VEGF‐C. VEGF‐D, which binds to the same receptors, has been reported to induce angiogenesis, but its lymphangiogenic potential is not known. In order to define the lymphangiogenic signalling pathway we have created transgenic mice overexpressing a VEGFR‐3‐specific mutant of VEGF‐C (VEGF‐C156S) or VEGF‐D in epidermal keratinocytes under the keratin 14 promoter. Both transgenes induced the growth of lymphatic vessels in the skin, whereas the blood vessel architecture was not affected. Evidence was also obtained that these growth factors act in a paracrine manner in vivo. These results demonstrate that stimulation of the VEGFR‐3 signal transduction pathway is sufficient to induce specifically lymphangiogenesis in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting

Ivan B. Lobov; R. A. Renard; Nick Papadopoulos; Nicholas W. Gale; Gavin Thurston; George D. Yancopoulos; Stanley J. Wiegand

Genetic deletion studies have shown that haploinsufficiency of Delta-like ligand (Dll) 4, a transmembrane ligand for the Notch family of receptors, results in major vascular defects and embryonic lethality. To better define the role of Dll4 during vascular growth and differentiation, we selected the postnatal retina as a model because its vasculature develops shortly after birth in a highly stereotypic manner, during which time it is accessible to experimental manipulation. We report that Dll4 expression is dynamically regulated by VEGF in the retinal vasculature, where it is most prominently expressed at the leading front of actively growing vessels. Deletion of a single Dll4 allele or pharmacologic inhibition of Dll4/Notch signaling by intraocular administration of either soluble Dll4-Fc or a blocking antibody against Dll4 all produced the same set of characteristic abnormalities in the developing retinal vasculature, most notably enhanced angiogenic sprouting and increased endothelial cell proliferation, resulting in the formation of a denser and more highly interconnected superficial capillary plexus. In a model of ischemic retinopathy, Dll4 blockade also enhanced angiogenic sprouting and regrowth of lost retinal vessels while suppressing ectopic pathological neovascularization. Our data demonstrate that Dll4 is induced by VEGF as a negative feedback regulator and acts to prevent overexuberant angiogenic sprouting, promoting the timely formation of a well differentiated vascular network.

Collaboration


Dive into the Gavin Thurston's collaboration.

Top Co-Authors

Avatar

George D. Yancopoulos

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge