Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy Hauck Newman is active.

Publication


Featured researches published by Amy Hauck Newman.


Science | 2010

Structure of the human dopamine d3 receptor in complex with a d2/d3 selective antagonist.

Ellen Y.T. Chien; Wei Liu; Qiang Zhao; Vsevolod Katritch; Gye Won Han; Michael A. Hanson; Lei Shi; Amy Hauck Newman; Jonathan A. Javitch; Vadim Cherezov; Raymond C. Stevens

Tweaking Dopamine Reception Dopamine modulates many cognitive and emotional functions of the human brain by activating G protein–coupled receptors. Antipsychotic drugs that block two of the receptor subtypes are used to treat schizophrenia but have multiple side effects. Chien et al. (p. 1091; see the Research Article by Wu et al.) resolved the crystal structure of one receptor in complex with a small-molecule inhibitor at 3.15 angstrom resolution. Homology modeling with other receptor subtypes might be a promising route to reveal potential structural differences that can be exploited in the design of selective therapeutic inhibitors having fewer side effects. Discovery of a binding site in the extracellular domain of a dopamine receptor offers hope for more selective therapeutics. Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein–coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.


Nature Chemical Biology | 2010

Time-resolved FRET between GPCR ligands reveals oligomers in native tissues

Laura Albizu; Martin Cottet; Michaela Kralikova; Stoytcho Stoev; René Seyer; Isabelle Brabet; Thomas Roux; Hervé Bazin; Emmanuel Bourrier; Laurent Lamarque; Christophe Breton; Marie-Laure Rives; Amy Hauck Newman; Jonathan A. Javitch; Eric Trinquet; Maurice Manning; Jean-Philippe Pin; Bernard Mouillac; Thierry Durroux

G protein-coupled receptor (GPCR) oligomers have been proposed to play critical roles in cell signaling, but confirmation of their existence in a native context remains elusive, as no direct interactions between receptors have been reported. To demonstrate their presence in native tissues, we developed a time-resolved FRET strategy that is based on receptor labeling with selective fluorescent ligands. Specific FRET signals were observed with four different receptors expressed in cell lines, consistent with their dimeric or oligomeric nature in these transfected cells. More notably, the comparison between FRET signals measured with sets of fluorescent agonists and antagonists was consistent with an asymmetric relationship of the two protomers in an activated GPCR dimer. Finally, we applied the strategy to native tissues and succeeded in demonstrating the presence of oxytocin receptor dimers and/or oligomers in mammary gland.


Nature Neuroscience | 2008

The binding sites for cocaine and dopamine in the dopamine transporter overlap

Thijs Beuming; Julie Kniazeff; Marianne L Bergmann; Lei Shi; Luis Gracia; Klaudia Raniszewska; Amy Hauck Newman; Jonathan A. Javitch; Harel Weinstein; Ulrik Gether; Claus J. Loland

Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog LeuT. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed mutagenesis and by trapping the radiolabeled cocaine analog [3H]CFT in the transporter, either by cross-linking engineered cysteines or with an engineered Zn2+-binding site that was situated extracellularly to the predicted common binding pocket. Our data demonstrate the molecular basis for the competitive inhibition of dopamine transport by cocaine.


Annals of the New York Academy of Sciences | 2010

Current perspectives on selective dopamine D3 receptor antagonists as pharmacotherapeutics for addictions and related disorders

Christian Heidbreder; Amy Hauck Newman

Repeated exposure to drugs of abuse produces long‐term molecular and neurochemical changes that may explain the core features of addiction, such as the compulsive seeking and taking of the drug, as well as the risk of relapse. A growing number of new molecular and cellular targets of addictive drugs have been identified, and rapid advances are being made in relating those targets to specific behavioral phenotypes in animal models of addiction. In this context, the pattern of expression of the dopamine (DA) D3 receptor in the rodent and human brain and changes in this pattern in response to drugs of abuse have contributed primarily to direct research efforts toward the development of selective DA D3 receptor antagonists. Growing preclinical evidence indicates that these compounds may actually regulate the motivation to self‐administer drugs and disrupt drug‐associated cue‐induced craving. This report will be divided into three parts. First, preclinical evidence in support of the efficacy of selective DA D3 receptor antagonists in animal models of drug addiction will be reviewed. The effects of mixed DA D2/D3 receptor antagonists will not be discussed here because most of these compounds have low selectivity at the D3 versus D2 receptor, and their efficacy profile is related primarily to functional antagonism at D2 receptors and possibly interactions with other neurotransmitter systems. Second, major advances in medicinal chemistry for the identification and optimization of selective DA D3 receptor antagonists and partial agonists will be analyzed. Third, translational research from preclinical efficacy studies to so‐called proof‐of‐concept studies for drug addiction indications will be discussed.


Journal of Biological Chemistry | 2006

Tyr-95 and Ile-172 in Transmembrane Segments 1 and 3 of Human Serotonin Transporters Interact to Establish High Affinity Recognition of Antidepressants

L. Keith Henry; Julie R. Field; Erika M. Adkins; M. Laura Parnas; Roxanne A. Vaughan; Mu-Fa Zou; Amy Hauck Newman; Randy D. Blakely

In previous studies examining the structural determinants of antidepressant and substrate recognition by serotonin transporters (SERTs), we identified Tyr-95 in transmembrane segment 1 (TM1) of human SERT as a major determinant of binding for several antagonists, including racemic citalopram ((RS)-CIT). Here we described a separate site in hSERT TM3 (Ile-172) that impacts (RS)-CIT recognition when switched to the corresponding Drosophila SERT residue (I172M). The hSERT I172M mutant displays a marked loss of inhibitor potency for multiple inhibitors such as (RS)-CIT, clomipramine, RTI-55, fluoxetine, cocaine, nisoxetine, mazindol, and nomifensine, whereas recognition of substrates, including serotonin and 3,4-methylenedioxymethamphetamine, is unaffected. Selectivity for antagonist interactions is evident with this substitution because the potencies of the antidepressants tianeptine and paroxetine are unchanged. Reduced cocaine analog recognition was verified in photoaffinity labeling studies using [125I]MFZ 2-24. In contrast to the I172M substitution, other substitutions at this position significantly affected substrate recognition and/or transport activity. Additionally, the mouse mutation (mSERT I172M) exhibits similar selective changes in inhibitor potency. Unlike hSERT or mSERT, analogous substitutions in mouse dopamine transporter (V152M) or human norepinephrine transporter (V148M) result in transporters that bind substrate but are deficient in the subsequent translocation of the substrate. A double mutant hSERT Y95F/I172M had a synergistic impact on (RS)-CIT recognition (∼10,000-fold decrease in (RS)-CIT potency) in the context of normal serotonin recognition. The less active enantiomer (R)-CIT responded to the I172M substitution like (S)-CIT but was relatively insensitive to the Y95F substitution and did not display a synergistic loss at Y95F/I172M. An hSERT mutant with single cysteine substitutions in TM1 and TM3 resulted in formation of a high affinity cadmium metal coordination site, suggesting proximity of these domains in the tertiary structure of SERT. These studies provided evidence for distinct binding sites coordinating SERT antagonists and revealed a close interaction between TM1 and TM3 differentially targeted by stereoisomers of CIT.


Neuropsychopharmacology | 2006

The novel dopamine D3 receptor antagonist NGB 2904 inhibits cocaine's rewarding effects and cocaine-induced reinstatement of drug-seeking behavior in rats.

Zheng-Xiong Xi; Amy Hauck Newman; Jeremy Gilbert; Arlene C. Pak; Xiao-Qing Peng; Charles R. Ashby; Leah Gitajn; Eliot L. Gardner

Accumulating evidence indicates that dopamine (DA) D3 receptor antagonists appear highly promising in attenuating cocaine reward and relapse in preclinical models of addiction. In the present study, we investigated the effects of the novel D3-selective antagonist NGB 2904 (N-(4-[4-{2,3-dichlorophenyl}-1-piperazinyl]butyl)-3-fluorenylcarboxamide) on cocaine self-administration, cocaine-enhanced brain stimulation reward (BSR), and cocaine-triggered reinstatement of drug-seeking behavior in male Long–Evans rats. We found that: (1) acute intraperitoneal (i.p.) administration of NGB 2904 (0.1–10 mg/kg) failed to alter cocaine self-administration (0.5 mg/kg/infusion) under fixed-ratio 2 (FR2) reinforcement, but 1 or 5 mg/kg NGB 2904 significantly lowered the break-point for cocaine self-administration under progressive-ratio (PR) reinforcement; (2) cocaine (1, 2, and 10 mg/kg) significantly enhanced electrical BSR (decreased brain reward thresholds), while NGB 2904 significantly inhibited the enhancement of BSR elicited by 2 mg/kg, but not 10 mg/kg of cocaine; (3) NGB 2904 alone neither maintained self-administration behavior nor altered brain reward thresholds; and (4) NGB 2904 significantly inhibited cocaine-triggered reinstatement of extinguished drug-seeking behavior, but not sucrose-plus-sucrose-cue-triggered reinstatement of sucrose-seeking behavior. Overall, these data show that the novel D3-selective antagonist NGB 2904 attenuates cocaines rewarding effects as assessed by PR self-administration, BSR, and cocaine-triggered reinstatement of cocaine-seeking behavior. Owing to these properties and to its lack of rewarding effects (as assessed by BSR and by substitution during drug self-administration), NGB 2904 merits further investigation as a potential agent for treatment of cocaine addiction.


Neuropsychopharmacology | 2010

Dissociable Control of Impulsivity in Rats by Dopamine D2/3 Receptors in the Core and Shell Subregions of the Nucleus Accumbens

Morgane Besson; David Belin; Ruth McNamara; David E. H. Theobald; Aude Castel; Victoria L Beckett; Ben M Crittenden; Amy Hauck Newman; Barry J. Everitt; Trevor W. Robbins; Jeffrey W. Dalley

Previous research has identified the nucleus accumbens (NAcb) as an important brain region underlying inter-individual variation in impulsive behavior. Such variation has been linked to decreased dopamine (DA) D2/3 receptor availability in the ventral striatum of rats exhibiting spontaneously high levels of impulsivity on a 5-choice serial reaction time (5-CSRT) test of sustained visual attention. This study investigated the involvement of DA D2/3 receptors in the NAcb core (NAcbC) and the NAcb shell (NAcbS) in impulsivity. We investigated the effects of a DA D2/3 receptor antagonist (nafadotride) and a DA D2/3 partial agonist (aripiprazole) infused directly into either the NAcbC or NAcbS of rats selected for high (HI) and low (LI) impulsivity on the 5-CSRT task. Nafadotride increased significantly the level of impulsivity when infused into the NAcbS, but decreased impulsivity when infused into the NAcbC of HI rats. By contrast, intra-NAcb microinfusions of aripiprazole did not affect impulsivity. Systemic administration of nafadotride had no effect on impulsive behavior but increased the number of omissions and correct response latencies, whereas systemic injections of aripiprazole decreased impulsive and perseverative behavior, and increased the number of omissions and correct response latencies. These findings indicate an opponent modulation of impulsive behavior by DA D2/3 receptors in the NAcbS and NAcbC. Such divergent roles may have relevance for the etiology and treatment of clinical disorders of behavioral control, including attention-deficit hyperactivity disorder and drug addiction.


Journal of Medicinal Chemistry | 2012

Molecular determinants of selectivity and efficacy at the dopamine D3 receptor.

Amy Hauck Newman; Thijs Beuming; Ashwini K. Banala; Prashant Donthamsetti; Katherine Pongetti; Alex LaBounty; Benjamin Levy; Jianjing Cao; Mayako Michino; Robert R. Luedtke; Jonathan A. Javitch; Lei Shi

The dopamine D3 receptor (D3R) has been implicated in substance abuse and other neuropsychiatric disorders. The high sequence homology between the D3R and D2R, especially within the orthosteric binding site (OBS) that binds dopamine, has made the development of D3R-selective compounds challenging. Here, we deconstruct into pharmacophoric elements a series of D3R-selective substituted-4-phenylpiperazine compounds and use computational simulations and binding and activation studies to dissect the structural bases for D3R selectivity and efficacy. We find that selectivity arises from divergent interactions within a second binding pocket (SBP) separate from the OBS, whereas efficacy depends on the binding mode in the OBS. Our findings reveal structural features of the receptor that are critical to selectivity and efficacy that can be used to design highly D3R-selective ligands with targeted efficacies. These findings are generalizable to other GPCRs in which the SBP can be targeted by bitopic or allosteric ligands.


Molecular Pharmacology | 2007

Relationship between conformational changes in the dopamine transporter and cocaine-like subjective effects of uptake inhibitors.

Claus J. Loland; Rajeev I. Desai; Mu Fa Zou; Jianjing Cao; Peter Grundt; Klaus Gerstbrein; Harald H. Sitte; Amy Hauck Newman; Jonathan L. Katz; Ulrik Gether

Cocaine exerts its stimulatory effect by inhibiting the dopamine transporter (DAT). However, novel benztropine- and rimcazole-based inhibitors show reduced stimulant effects compared with cocaine, despite higher affinity and selectivity for DAT. To investigate possible mechanisms, we compared the subjective effects of different inhibitors with their molecular mode of interaction at the DAT. We determined how different inhibitors affected accessibility of the sulfhydryl-reactive reagent [2-(trimethylammonium)ethyl]-methanethiosulfonate to an inserted cysteine (I159C), which is accessible when the extracellular transporter gate is open but inaccessible when it is closed. The data indicated that cocaine analogs bind an open conformation, whereas benztropine and rimcazole analogs bind a closed conformation. Next, we investigated the changes in inhibition potency of [3H]dopamine uptake of the compounds at a mutant DAT (Y335A) characterized by a global change in the conformational equilibrium. We observed a close relationship between the decrease in potencies of inhibitors at this mutant and cocaine-like responding in rats trained to discriminate cocaine from saline injections. Our data suggest that chemically different DAT inhibitors stabilize distinct transporter conformations and that this in turn affects the cocaine-like subjective effects of these compounds in vivo.


Journal of Biological Chemistry | 2010

The N Terminus of Monoamine Transporters Is a Lever Required for the Action of Amphetamines

Sonja Sucic; Stefan Dallinger; Barbara Zdrazil; René Weissensteiner; Trine N. Jørgensen; Marion Holy; Oliver Kudlacek; Stefan Seidel; Joo Hee Cha; Ulrik Gether; Amy Hauck Newman; Gerhard F. Ecker; Michael Freissmuth; Harald H. Sitte

The serotonin transporter (SERT) terminates neurotransmission by removing serotonin from the synaptic cleft. In addition, it is the site of action of antidepressants (which block the transporter) and of amphetamines (which induce substrate efflux). We explored the functional importance of the N terminus in mediating the action of amphetamines by focusing initially on the highly conserved threonine residue at position 81, a candidate site for phosphorylation by protein kinase C. Molecular dynamics simulations of the wild type SERT, compared with its mutations SERTT81A and SERTT81D, suggested structural changes in the inner vestibule indicative of an opening of the inner vestibule. Predictions from this model (e.g. the preferential accumulation of SERTT81A in the inward conformation, its reduced turnover number, and a larger distance between its N and C termini) were verified. Most importantly, SERTT81A (and the homologous mutations in noradrenaline and dopamine) failed to support amphetamine-induced efflux, and this was not remedied by aspartate at this position. Amphetamine-induced currents through SERTT81A were comparable with those through the wild type transporter. Both abundant Na+ entry and accumulation of SERTT81A in the inward facing conformation ought to favor amphetamine-induced efflux. Thus, we surmised that the N terminus must play a direct role in driving the transporter into a state that supports amphetamine-induced efflux. This hypothesis was verified by truncating the first 64 amino acids and by tethering the N terminus to an additional transmembrane helix. Either modification abolished amphetamine-induced efflux. We therefore conclude that the N terminus of monoamine transporters acts as a lever that sustains reverse transport.

Collaboration


Dive into the Amy Hauck Newman's collaboration.

Top Co-Authors

Avatar

Jonathan L. Katz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Theresa Kopajtic

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Jianjing Cao

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Peter Grundt

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Mu-Fa Zou

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Lei Shi

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas M. Keck

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Gianluigi Tanda

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Kenner C. Rice

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge