Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Grundt is active.

Publication


Featured researches published by Peter Grundt.


Molecular Pharmacology | 2007

Relationship between conformational changes in the dopamine transporter and cocaine-like subjective effects of uptake inhibitors.

Claus J. Loland; Rajeev I. Desai; Mu Fa Zou; Jianjing Cao; Peter Grundt; Klaus Gerstbrein; Harald H. Sitte; Amy Hauck Newman; Jonathan L. Katz; Ulrik Gether

Cocaine exerts its stimulatory effect by inhibiting the dopamine transporter (DAT). However, novel benztropine- and rimcazole-based inhibitors show reduced stimulant effects compared with cocaine, despite higher affinity and selectivity for DAT. To investigate possible mechanisms, we compared the subjective effects of different inhibitors with their molecular mode of interaction at the DAT. We determined how different inhibitors affected accessibility of the sulfhydryl-reactive reagent [2-(trimethylammonium)ethyl]-methanethiosulfonate to an inserted cysteine (I159C), which is accessible when the extracellular transporter gate is open but inaccessible when it is closed. The data indicated that cocaine analogs bind an open conformation, whereas benztropine and rimcazole analogs bind a closed conformation. Next, we investigated the changes in inhibition potency of [3H]dopamine uptake of the compounds at a mutant DAT (Y335A) characterized by a global change in the conformational equilibrium. We observed a close relationship between the decrease in potencies of inhibitors at this mutant and cocaine-like responding in rats trained to discriminate cocaine from saline injections. Our data suggest that chemically different DAT inhibitors stabilize distinct transporter conformations and that this in turn affects the cocaine-like subjective effects of these compounds in vivo.


Psychopharmacology | 2007

Yawning and hypothermia in rats: effects of dopamine D3 and D2 agonists and antagonists.

Gregory T. Collins; Amy Hauck Newman; Peter Grundt; Kenner C. Rice; Stephen M. Husbands; Cédric Chauvignac; Jianyong Chen; Shaomeng Wang; James H. Woods

RationaleIdentification of behaviors specifically mediated by the dopamine D2 and D3 receptors would allow for the determination of in vivo receptor selectivity and aide the development of novel therapeutics for dopamine-related diseases.ObjectivesThese studies were aimed at evaluating the specific receptors involved in the mediation of D2/D3 agonist-induced yawning and hypothermia.Materials and methodsThe relative potencies of a series of D2-like agonists to produce yawning and hypothermia were determined. The ability of D3-selective and D2-selective antagonists to inhibit the induction of yawning and hypothermia were assessed and a series of D2/D3 antagonists were characterized with respect to their ability to alter yawning induced by a low and high dose of PD-128,907 and sumanirole-induced hypothermia.ResultsD3-preferring agonists induced yawning at lower doses than those required to induce hypothermia and the D2-preferring agonist, sumanirole, induced hypothermia at lower doses than were necessary to induce yawning. The rank order of D3 selectivity was pramipexole > PD-128,907 = 7-OH-DPAT = quinpirole = quinelorane > apomorphine = U91356A. Sumanirole had only D2 agonist effects. PG01037, SB-277011A, and U99194 were all D3-selective antagonists, whereas haloperidol and L-741,626 were D2-selective antagonists and nafadotride’s profile of action was more similar to the D2 antagonists than to the D3 antagonists.ConclusionsD3 and D2 receptors have specific roles in the mediation of yawning and hypothermia, respectively, and the analysis of these effects allow inferences to be made regarding the selectivity of D2/D3 agonists and antagonists with respect to their actions at D2 and D3 receptors.


Journal of Medicinal Chemistry | 2009

N-(4-(4-(2,3-Dichloro- or 2-methoxyphenyl)piperazin-1-yl)-butyl)-heterobiarylcarboxamides with Functionalized Linking Chains as High Affinity and Enantioselective D3 Receptor Antagonists

Amy Hauck Newman; Peter Grundt; George Cyriac; Jeffrey R. Deschamps; Michelle Taylor; Rakesh Kumar; David Ho; Robert R. Luedtke

In the present report, the D3 receptor pharmacophore is modified in the 2,3-diCl- and 2-OCH(3)-phenylpiperazine class of compounds with the goal to improve D3 receptor affinity and selectivity. This extension of structure-activity relationships (SAR) has resulted in the identification of the first enantioselective D3 antagonists (R- and S-22) to be reported, wherein enantioselectivity is more pronounced at D3 than at D2, and that a binding region on the second extracellular loop (E2) may play a role in both enantioselectivity and D3 receptor selectivity. Moreover, we have discovered some of the most D3-selective compounds reported to date that show high affinity (K(i) = 1 nM) for D3 and approximately 400-fold selectivity over the D2 receptor subtype. Several of these analogues showed exquisite selectivity for D3 receptors over >60 other receptors, further underscoring their value as in vivo research tools. These lead compounds also have appropriate physical characteristics for in vivo exploration and therefore will be useful in determining how intrinsic activity at D3 receptors tested in vitro is related to behaviors in animal models of addiction and other neuropsychiatric disorders.


Journal of Psychopharmacology | 2011

PG01037, a novel dopamine D3 receptor antagonist, inhibits the effects of methamphetamine in rats

Amanda E. Higley; Krista Spiller; Peter Grundt; Amy Hauck Newman; Stephen W. Kiefer; Zheng-Zhong Xi; Eliot L. Gardner

Our previous studies have shown that the selective dopamine D3 receptor antagonists SB-277011A or NGB 2904 significantly attenuate cocaine self-administration under a progressive-ratio reinforcement schedule and cocaine-, methamphetamine- or nicotine-enhanced brain stimulation reward. However, the poor bioavailability of SB-277011A has limited its potential use in humans. In the present study, we investigated the effects of the novel D3 receptor antagonist PG01037 on methamphetamine self-administration, methamphetamine-associated cue-induced reinstatement of drug seeking and methamphetamine-enhanced brain stimulation reward. Rats were allowed to intravenously self-administer methamphetamine under fixed-ratio 2 and progressive-ratio reinforcement conditions, and then the effects of PG01037 on methamphetamine self-administration and cue-induced reinstatement were assessed. Additional groups of rats were trained for intracranial electrical brain stimulation reward and the effects of PG01037 and methamphetamine on brain stimulation reward were assessed. Acute intraperitoneal administration of PG01037 (3, 10, 30 mg/kg) failed to alter methamphetamine or sucrose self-administration under fixed-ratio 2 reinforcement, but significantly lowered the break-point levels for methamphetamine or sucrose self-administration under progressive-ratio reinforcement. In addition, PG01037 significantly inhibited methamphetamine-associated cue-triggered reinstatement of drug-seeking behavior and methamphetamine-enhanced brain stimulation reward. These data suggest that the novel D3 antagonist PG01037 significantly attenuates the rewarding effects as assessed by progressive-ratio self-administration and brain stimulation reward, and inhibits methamphetamine-associated cue-induced reinstatement of drug-seeking behavior These findings support the potential use of PG01037 or other selective D3 antagonists in the treatment of methamphetamine addiction.


Journal of Pharmacology and Experimental Therapeutics | 2010

Dopamine D3 and D2 Receptor Mechanisms in the Abuse-Related Behavioral Effects of Cocaine: Studies with Preferential Antagonists in Squirrel Monkeys

Cindy Achat-Mendes; Peter Grundt; Jianjing Cao; Donna M. Platt; Amy Hauck Newman; Roger D. Spealman

Dopamine (DA) D3 and D2 receptor mechanisms are implicated in cocaines abuse-related behavioral effects, but the relative contribution of the two receptor subtypes is only partially characterized. This study investigated the role of D3 and D2 subtype mechanisms by determining the degree to which the D3-preferring antagonist PG01037 [N-{4-[4-(2,3-dichlorophenyl)-piperazin- 1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl] and the D2-preferring antagonist L-741626 [3-[4-(4-chlorophenyl)-4- hydroxypiperidin-1-yl]methyl-1H-indole] attenuated several behavioral effects of cocaine in squirrel monkeys. Quantitative observational studies established doses of each antagonist that did not produce untoward effects, which were used in subsequent comparisons. In addition, the ability of the D3-preferring agonist PD128907 [(R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol)] and the D2-preferring agonist sumanirole [(R)-5,6-dihydro-5-(methylamino)-4H- imidazo[4,5,1-ij]quinolin-2(1H)-one(Z)-2-butenedioate] to reproduce cocaines discriminative stimulus (DS) and priming effects were compared. In monkeys trained to discriminate cocaine from vehicle, both DA antagonists attenuated and both DA agonists partially reproduced cocaines DS effects. PG01037 also selectively attenuated the cocaine-like DS effects of PD128907, whereas L-741626 attenuated the cocaine-like DS effects of both agonists. In self-administration studies, L-741626 nonselectively reduced cocaine- and food-maintained responding, whereas PG01037 was ineffective against either reinforcer. In studies involving reinstatement of extinguished cocaine seeking, both antagonists attenuated cocaine-induced reinstatement of responding, and both agonists induced at least partial reinstatement of cocaine seeking. L-741626 also attenuated sumanirole-induced, but not PD128907-induced, reinstatement of responding, whereas PG01037 was ineffective against either DA agonist. The results are consistent with a role for D3 and D2 receptor mechanisms in cocaines DS effects and cocaine-induced reinstatement of drug seeking, but provide no evidence for a major role of D3 receptors in the direct reinforcing effects of cocaine.


Journal of Pharmacology and Experimental Therapeutics | 2008

Food Restriction Alters N′-Propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine dihydrochloride (Pramipexole)-Induced Yawning, Hypothermia, and Locomotor Activity in Rats: Evidence for Sensitization of Dopamine D2 Receptor-Mediated Effects

Gregory T. Collins; Diane Calinski; Amy Hauck Newman; Peter Grundt; James H. Woods

Food restriction enhances sensitivity to the reinforcing effects of a variety of drugs of abuse including opiates, nicotine, and psychostimulants. Food restriction has also been shown to alter a variety of behavioral and pharmacological responses to dopaminergic agonists, including an increased sensitivity to the locomotor stimulatory effects of direct- and indirect-dopamine agonists, elevated extracellular dopamine levels in responses to psychostimulants, as well as suppression of agonist-induced yawning. Behavioral and molecular studies suggest that augmented dopaminergic responses observed in food-restricted animals result from a sensitization of the dopamine D2 receptor; however, little is known about how food restriction affects dopamine D3 receptor function. The current studies were aimed at better defining the effects of food restriction on D2 and D3 receptor function by assessing the capacity of N′-propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine dihydrochloride (pramipexole) to induce yawning, penile erection (PE), hypothermia, and locomotor activity in free-fed and food-restricted rats. Food restriction resulted in a suppression of pramipexole-induced yawning, a sensitized hypothermic response, and an enhanced locomotor response to pramipexole, effects that are suggestive of an enhanced D2 receptor activity; no effect on pramipexole-induced PE was observed. Antagonist studies further supported a food restriction-induced enhancement of the D2 receptor activity because the D2 antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1H-indole (L741,626) recovered pramipexole-induced yawning to free-fed levels, whereas yawning and PE were suppressed following pretreatment with the D3 antagonist N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide hydrochloride (PG01037). The results of the current studies suggest that food restriction sensitized rats to the D2-mediated effects of pramipexole while having no effect on the D3-mediated effects of pramipexole.


Neuropharmacology | 2009

Evaluation of the D3 dopamine receptor selective antagonist PG01037 on L-dopa-dependent abnormal involuntary movements in rats.

Rakesh Kumar; Lindsay R. Riddle; Suzy A. Griffin; Peter Grundt; Amy Hauck Newman; Robert R. Luedtke

The D3 dopamine receptor selective antagonist PG01037 has been evaluated for the ability to attenuate L-dopa-associated abnormal involuntary movements (AIMs) in unilaterally lesioned male Sprague-Dawley rats, which is a model of L-dopa-dependent dyskinesia in patients with Parkinsons Disease. The intrinsic activity of PG01037 was determined using a) a forskolin-dependent adenylyl cyclase inhibition assay with transfected HEK 293 cells expressing either the human D2Long or D3 dopamine receptor subtype and b) an assay for agonist-associated mitogenesis. For the initial experiments, the 5-HT1A receptor selective partial agonist buspirone was used as a positive control to verify our ability to quantitate changes in total AIMs and AIMs minus locomotor scores. Subcutaneous (s.c.) administration of PG01037 was found to have minimal effect on AIMs score. However, it was observed that the in vivo efficacy of PG01037 increased when administered by intraperitoneal (i.p.) injection 15 min after L-dopa/benserazide administration, as compared to a 60 min, 30 min or 0 min pretreatment. It was also found that i.p. administration of PG01037 could inhibit involuntary movements after they had achieved maximum intensity. PG01037 was found to attenuate AIM scores in these animals in a dose dependent manner with IC(50) value equal to a) 7.4 mg/kg following L-dopa/benserazide administration (8 mg/kg each, i.p.) and b) 18.4 mg/kg following the administration of apomorphine (0.05 mg/kg, s.c.). However, PG01037 did not effectively inhibit SKF 81297-dependent abnormal involuntary movements. Rotarod studies indicate that PG01037 at a dose of 10 mg/kg did not adversely affect motor coordination of the unilaterally lesioned rats. Evaluation of lesioned rats using a cylinder test behavioral paradigm indicated that PG01037 did not dramatically attenuate the beneficial effects of L-dopa. These studies suggest that D3 dopamine receptor selective antagonists are potential pharmacotherapeutic candidates for the treatment of L-dopa-associated dyskinesia in patients with Parkinsons Disease.


Journal of Pharmacology and Experimental Therapeutics | 2009

Proerectile effects of dopamine D2-like agonists are mediated by the D3 receptor in rats and mice.

Gregory T. Collins; Andrew Truccone; Faiza Haji-Abdi; Amy Hauck Newman; Peter Grundt; Kenner C. Rice; Stephen M. Husbands; Benjamin M. Greedy; Cécile Enguehard-Gueiffier; Alain Gueiffier; Jianyong Chen; Shaomeng Wang; Jonathan L. Katz; David K. Grandy; Roger K. Sunahara; James H. Woods

Dopamine D2-like agonists induce penile erection (PE) and yawning in a variety of species, effects that have been suggested recently to be specifically mediated by the D4 and D3 receptors, respectively. The current studies were aimed at characterizing a series of D2, D3, and D4 agonists with respect to their capacity to induce PE and yawning in the rat and the proerectile effects of apomorphine [(R)-(-)-5,6,6a,7-tetrahydro-6-methyl-4H-dibenzo-[de,g]quinoline-10,11-diol hydrochloride] in wild-type and D4 receptor (R) knockout (KO) mice. All D3 agonists induced dose-dependent increases in PE and yawning over a similar range of doses, whereas significant increases in PE or yawning were not observed with any of the D4 agonists. Likewise, D2, D3, and D4 antagonists were assessed for their capacity to alter apomorphine- and pramipexole (N′-propyl-4,5,6,7-tetrahydrobenzothiazole-2,6-diamine dihydrochloride)-induced PE and yawning. The D3 antagonist, PG01037 [N-{4-[4-(2,3-dichlorophenyl)-piperazin-1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide hydrochloride], inhibited the induction of PE and yawning, whereas the D2 antagonist, L-741,626 [3-[4-(4-chlorophenyl)-4-hydroxypiperidin-l-yl]methyl-1H-indole], reversed the inhibition of PE and yawning observed at higher doses. The D4 antagonist, L-745,870 [3-(4-[4-chlorophenyl]piperazin-1-yl)-methyl-1H-pyrrolo[2,3-b]pyridine trihydrochloride], did not alter apomorphine- or pramipexole-induced PE or yawning. A role for the D3 receptor was further supported because apomorphine was equipotent at inducing PE in wild-type and D4RKO mice, effects that were inhibited by the D3 antagonist, PG01037, in both wild-type and D4R KO mice. Together, these studies provide strong support that D2-like agonist-induced PE and yawning are differentially mediated by the D3 (induction) and D2 (inhibition) receptors. These studies fail to support a role for the D4 receptor in the regulation of PE or yawning by D2-like agonists.


Behavioural Pharmacology | 2010

Yawning and locomotor behavior induced by dopamine receptor agonists in mice and rats

Su Min Li; Gregory T. Collins; Noel M. Paul; Peter Grundt; Amy Hauck Newman; Ming Xu; David K. Grandy; James H. Woods; Jonathan L. Katz

Dopaminergic (DA) agonist-induced yawning in rats seems to be mediated by DA D3 receptors, and low doses of several DA agonists decrease locomotor activity, an effect attributed to presynaptic D2 receptors. Effects of several DA agonists on yawning and locomotor activity were examined in rats and mice. Yawning was reliably produced in rats, and by the cholinergic agonist, physostigmine, in both the species. However, DA agonists were ineffective in producing yawning in Swiss–Webster or DA D2R and DA D3R knockout or wild-type mice. The drugs significantly decreased locomotor activity in rats at one or two low doses, with activity returning to control levels at higher doses. In mice, the drugs decreased locomotion across a 1000–10 000-fold range of doses, with activity at control levels (U-91356A) or above control levels [(±)-7-hydroxy-2-dipropylaminotetralin HBr, quinpirole] at the highest doses. Low doses of agonists decreased locomotion in all mice except the DA D2R knockout mice, but were not antagonized by DA D2R or D3R antagonists (L-741 626, BP 897, or PG01037). Yawning does not provide a selective in-vivo indicator of DA D3R agonist activity in mice. Decreases in mouse locomotor activity by the DA agonists seem to be mediated by D2 DA receptors.


Psychopharmacology | 2010

Imaging brain regional and cortical laminar effects of selective D3 agonists and antagonists

Ji-Kyung Choi; Joseph B. Mandeville; Y. Iris Chen; Peter Grundt; Susanta K. Sarkar; Amy Hauck Newman; Bruce G. Jenkins

RationaleDopamine D3 receptors (D3R) may be important therapeutic targets for both drug abuse and dyskinesias in Parkinson’s disease; however, little is known about their functional circuitry.ObjectivesWe wished to determine if D3R antagonists SB-277011 and PG-01037 and D3R-preferring agonist 7-OH-DPAT are D3R selective in vivo. We further wished to characterize the response to D3R drugs using whole brain imaging to identify novel D3R circuitry.MethodsWe investigated D3R circuitry in rats using pharmacologic MRI and challenge with selective D3R antagonists and agonist at various doses to examine regional changes in cerebral blood volume (CBV). We compared regional activation patterns with D2R/D3R agonists, as well as with prior studies of mRNA expression and autoradiography.ResultsD3R antagonists induced positive CBV changes and D3R agonist negative CBV changes in brain regions including nucleus accumbens, infralimbic cortex, thalamus, interpeduncular region, hypothalamus, and hippocampus (strongest in subiculum). All D3R-preferring drugs showed markedly greater responses in nucleus accumbens than in caudate/putamen consistent with D3R selectivity and contrary to what was observed with D2R agonists. At high doses of D3R agonist, functional changes were differentiated across cortical laminae, with layer V–VI yielding positive CBV changes and layer IV yielding negative CBV changes. These results are not inconsistent with differential D1R and D3R innervation in these layers respectively showed previously using post-mortem techniques.ConclusionsMRI provides a new tool for testing the in vivo selectivity of novel D3R dopaminergic ligands where radiolabels may not be available. Further, the functional D3R circuitry strongly involves hypothalamus and subiculum as well as the limbic striatum.

Collaboration


Dive into the Peter Grundt's collaboration.

Top Co-Authors

Avatar

Amy Hauck Newman

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Robert R. Luedtke

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Gregory T. Collins

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Jonathan L. Katz

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jianjing Cao

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar

Michelle Taylor

University of North Texas

View shared research outputs
Top Co-Authors

Avatar

Rakesh Kumar

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Suzy A. Griffin

University of North Texas Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Theresa Kopajtic

National Institute on Drug Abuse

View shared research outputs
Researchain Logo
Decentralizing Knowledge