Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy L. Bauernfeind is active.

Publication


Featured researches published by Amy L. Bauernfeind.


Proceedings of the Royal Society of London B: Biological Sciences | 2010

Wernicke's area homologue in chimpanzees (Pan troglodytes) and its relation to the appearance of modern human language

Muhammad A. Spocter; William D. Hopkins; Amy R. Garrison; Amy L. Bauernfeind; Cheryl D. Stimpson; Patrick R. Hof; Chet C. Sherwood

Human language is distinctive compared with the communication systems of other species. Yet, several questions concerning its emergence and evolution remain unresolved. As a means of evaluating the neuroanatomical changes relevant to language that accompanied divergence from the last common ancestor of chimpanzees, bonobos and humans, we defined the cytoarchitectonic boundaries of area Tpt, a component of Wernickes area, in 12 common chimpanzee brains and used design-based stereologic methods to estimate regional volumes, total neuron number and neuron density. In addition, we created a probabilistic map of the location of area Tpt in a template chimpanzee brain coordinate space. Our results show that chimpanzees display significant population-level leftward asymmetry of area Tpt in terms of neuron number, with volume asymmetry approaching significance. Furthermore, asymmetry in the number of neurons in area Tpt was positively correlated with asymmetry of neuron numbers in Brodmanns area 45, a component of Brocas frontal language region. Our findings support the conclusion that leftward asymmetry of Wernickes area originated prior to the appearance of modern human language and before our divergence from the last common ancestor. Moreover, this study provides the first evidence of covariance between asymmetry of anterior and posterior cortical regions that in humans are important to language and other higher order cognitive functions.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans

Serena Bianchi; Cheryl D. Stimpson; Tetyana Duka; Michael D. Larsen; William G.M. Janssen; Zachary Collins; Amy L. Bauernfeind; Steven J. Schapiro; Wallace B. Baze; Mark J. McArthur; William D. Hopkins; Derek E. Wildman; Leonard Lipovich; Christopher W. Kuzawa; Bob Jacobs; Patrick R. Hof; Chet C. Sherwood

Neocortical development in humans is characterized by an extended period of synaptic proliferation that peaks in mid-childhood, with subsequent pruning through early adulthood, as well as relatively delayed maturation of neuronal arborization in the prefrontal cortex compared with sensorimotor areas. In macaque monkeys, cortical synaptogenesis peaks during early infancy and developmental changes in synapse density and dendritic spines occur synchronously across cortical regions. Thus, relatively prolonged synapse and neuronal maturation in humans might contribute to enhancement of social learning during development and transmission of cultural practices, including language. However, because macaques, which share a last common ancestor with humans ∼25 million years ago, have served as the predominant comparative primate model in neurodevelopmental research, the paucity of data from more closely related great apes leaves unresolved when these evolutionary changes in the timing of cortical development became established in the human lineage. To address this question, we used immunohistochemistry, electron microscopy, and Golgi staining to characterize synaptic density and dendritic morphology of pyramidal neurons in primary somatosensory (area 3b), primary motor (area 4), prestriate visual (area 18), and prefrontal (area 10) cortices of developing chimpanzees (Pan troglodytes). We found that synaptogenesis occurs synchronously across cortical areas, with a peak of synapse density during the juvenile period (3–5 y). Moreover, similar to findings in humans, dendrites of prefrontal pyramidal neurons developed later than sensorimotor areas. These results suggest that evolutionary changes to neocortical development promoting greater neuronal plasticity early in postnatal life preceded the divergence of the human and chimpanzee lineages.


Brain Structure & Function | 2014

Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance.

Amy L. Bauernfeind; Sarah K. Barks; Tetyana Duka; Lawrence I. Grossman; Patrick R. Hof; Chet C. Sherwood

Abstract Glucose metabolism produces, by oxidative phosphorylation, more than 15 times the amount of energy generated by aerobic glycolysis. Nonetheless, aerobic glycolysis remains a prevalent metabolic pathway in the brain. Here we review evidence suggesting that this pathway contributes essential molecules to the biomass of the brain. Aerobic metabolism is the dominant metabolic pathway during early postnatal development when lipids and proteins are needed for the processes of axonal elongation, synaptogenesis, and myelination. Furthermore, aerobic metabolism may continue into adulthood to supply biomolecules for activity-related changes at the synapse and turnover of constituent structural components of neurons. Conversely, oxidative phosphorylation appears to be the main metabolic support for synaptic transmission, and, therefore, this pathway seems to be more dominant in brain structures and at time points in the lifespan that are characterized by increased synaptic density. We present the case for differing relationships between aerobic glycolysis and oxidative phosphorylation across primates in association with species-specific variation in neurodevelopmental trajectories. In doing so, we provide an alternative interpretation for the assessment of radiolabeled glucose positron emission tomography studies that regularly attribute increases in glucose uptake to neural activity alone, and propose a new model for the contribution of metabolic pathways for energetic demand and neural tissue growth. We conclude that comparative studies of metabolic appropriation in the brain may contribute to the discussion of human cognitive evolution and to the understanding of human-specific aging and the etiology of neuropsychiatric diseases.


Neuropsychopharmacology | 2011

Human Ecstasy Use is Associated with Increased Cortical Excitability: An fMRI Study

Amy L. Bauernfeind; Mary S. Dietrich; Jennifer Urbano Blackford; Evonne J. Charboneau; James G Lillevig; Christopher J Cannistraci; Neil D. Woodward; Aize Cao; Tristan J. Watkins; Christina R. Di Iorio; Carissa J. Cascio; Ronald M. Salomon; Ronald L. Cowan

The serotonergic neurotoxin, 3,4-methylenedioxymethamphetamine (MDMA/Ecstasy), is a highly popular recreational drug. Human recreational MDMA users have neurocognitive and neuropsychiatric impairments, and human neuroimaging data are consistent with animal reports of serotonin neurotoxicity. However, functional neuroimaging studies have not found consistent effects of MDMA on brain neurophysiology in human users. Several lines of evidence suggest that studying MDMA effects in visual system might reveal the general cortical and subcortical neurophysiological consequences of MDMA use. We used 3 T functional magnetic resonance imaging during visual stimulation to compare visual system lateral geniculate nucleus (LGN) and Brodmann Area (BA) 17 and BA 18 activation in 20 long abstinent (479.95±580.65 days) MDMA users and 20 non-MDMA user controls. Lifetime quantity of MDMA use was strongly positively correlated with blood oxygenation level-dependent (BOLD) signal intensity in bilateral LGN (rs=0.59; p=0.007), BA 17 (rs=0.50; p=0.027), and BA 18 (rs=0.48; p=0.031), and with the spatial extent of activation in BA 17 (rs=0.059; p=0.007) and BA 18 (rs=0.55; p=0.013). There were no between-group differences in brain activation in any region, but the heaviest MDMA users showed a significantly greater spatial extent of activation than controls in BA 17 (p=0.031) and BA 18 (p=0.049). These results suggest that human recreational MDMA use may be associated with a long-lasting increase in cortical excitability, possibly through loss of serotonin input to cortical and subcortical regions. When considered in the context of previous results, cortical hyper-excitability may be a biomarker for MDMA-induced serotonin neurotoxicity.


Genome Biology and Evolution | 2015

Evolutionary divergence of gene and protein expression in the brains of humans and chimpanzees

Amy L. Bauernfeind; Erik J. Soderblom; Meredith E. Turner; M. Arthur Moseley; John J. Ely; Patrick R. Hof; Chet C. Sherwood; Gregory A. Wray; Courtney C. Babbitt

Although transcriptomic profiling has become the standard approach for exploring molecular differences in the primate brain, very little is known about how the expression levels of gene transcripts relate to downstream protein abundance. Moreover, it is unknown whether the relationship changes depending on the brain region or species under investigation. We performed high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses on two regions of the human and chimpanzee brain: The anterior cingulate cortex and caudate nucleus. In both brain regions, we found a lower correlation between mRNA and protein expression levels in humans and chimpanzees than has been reported for other tissues and cell types, suggesting that the brain may engage extensive tissue-specific regulation affecting protein abundance. In both species, only a few categories of biological function exhibited strong correlations between mRNA and protein expression levels. These categories included oxidative metabolism and protein synthesis and modification, indicating that the expression levels of mRNA transcripts supporting these biological functions are more predictive of protein expression compared with other functional categories. More generally, however, the two measures of molecular expression provided strikingly divergent perspectives into differential expression between human and chimpanzee brains: mRNA comparisons revealed significant differences in neuronal communication, ion transport, and regulatory processes, whereas protein comparisons indicated differences in perception and cognition, metabolic processes, and organization of the cytoskeleton. Our results highlight the importance of examining protein expression in evolutionary analyses and call for a more thorough understanding of tissue-specific protein expression levels.


Psychiatry Research-neuroimaging | 2011

Time series fMRI measures detect changes in pontine raphé following acute tryptophan depletion

Ronald M. Salomon; Ronald L. Cowan; Baxter P. Rogers; Mary S. Dietrich; Amy L. Bauernfeind; Robert M. Kessler; John C. Gore

Serotonin is synthesized from its precursor, tryptophan, by brainstem raphé neurons and their synaptic terminals in limbic regions. The omission of tryptophan from an Acute Tryptophan Depletion (ATD) diet transiently diminishes serotonin synthesis, alters raphé activity, and mimics symptoms of depression. Raphé functional magnetic resonance imaging (fMRI) poses challenges using signal-averaging analyses. Time-series properties of fMRI blood oxygenation level dependent (BOLD) signals may hold promise, so we analyzed raphé signals for changes with the ATD diet. Eleven remitted (previously depressed) patients were awake with eyes-closed during seven-minute resting scans with 0.5s(-1) sampling. BOLD signal time-series data were frequency-filtered using wavelet transforms, yielding three octave-width frequency bands from 0.25 to 0.03s(-1) and an unbounded band below 0.03s(-1). Spectral power, reflecting signal information, increased in pontine raphé at high frequencies (0.25 to 0.125s(-1)) during ATD (compared to control, balanced, diet, P<0.004) but was unchanged at other frequencies. Functional connectivity, the correlation between time-series data from pairs of regions, weakened between pontine raphé and anterior thalamus at low frequencies during ATD (P<0.05). This preliminarily supports using fMRI time-series features to assess pontine raphé function. Whether, and how, high frequency activity oscillations interfere with low frequency signaling requires further study.


The Journal of Comparative Neurology | 2015

High spatial resolution proteomic comparison of the brain in humans and chimpanzees.

Amy L. Bauernfeind; Michelle L. Reyzer; Richard M. Caprioli; John J. Ely; Courtney C. Babbitt; Gregory A. Wray; Patrick R. Hof; Chet C. Sherwood

We performed high‐throughput mass spectrometry at high spatial resolution from individual regions (anterior cingulate and primary motor, somatosensory, and visual cortices) and layers of the neocortex (layers III, IV, and V) and cerebellum (granule cell layer), as well as the caudate nucleus in humans and chimpanzees. A total of 39 mass spectrometry peaks were matched with probable protein identifications in both species, allowing for comparison in expression. We explored how the pattern of protein expression varies across regions and cortical layers to provide insights into the differences in molecular phenotype of these neural structures between species. The expression of proteins differed principally in a region‐ and layer‐specific pattern, with more subtle differences between species. Specifically, human and chimpanzee brains were similar in their distribution of proteins related to the regulation of transcription and enzyme activity but differed in their expression of proteins supporting aerobic metabolism. Whereas most work assessing molecular expression differences in the brains of primates has been performed on gene transcripts, this dataset extends current understanding of the differential molecular expression that may underlie human cognitive specializations. J. Comp. Neurol. 523:2043–2061, 2015.


Journal of Human Evolution | 2014

The appropriation of glucose through primate neurodevelopment

Amy L. Bauernfeind; Courtney C. Babbitt

The human brain is considerably larger and more energetically costly than that of other primate species. As such, discovering how human ancestors were able to provide sufficient energy to their brains is a central theme in the study of hominin evolution. However, many discussions of metabolism frequently omit the different ways in which energy, primarily glucose, is used once made available to the brain. In this review, we discuss two glucose metabolic pathways, oxidative phosphorylation and aerobic glycolysis, and their respective contributions to the energetic and anabolic budgets of the brain. While oxidative phosphorylation is a more efficient producer of energy, aerobic glycolysis contributes essential molecules for the growth of the brain and maintaining the structure of its cells. Although both pathways occur in the brain throughout the lifetime, aerobic glycolysis is a critical pathway during development, and oxidative phosphorylation is highest during adulthood. We outline how elevated levels of aerobic glycolysis may support the protracted neurodevelopmental sequence of humans compared with other primates. Finally, we review the genetic evidence for differences in metabolic function in the brains of primates and explore genes that may provide insight into how glucose metabolism may differ across species.


Annals of the New York Academy of Sciences | 2011

Neocortical neuron morphology in Afrotheria: comparing the rock hyrax with the African elephant

Serena Bianchi; Amy L. Bauernfeind; Kanika Gupta; Cheryl D. Stimpson; Muhammad A. Spocter; Christopher J. Bonar; Paul R. Manger; Patrick R. Hof; Bob Jacobs; Chet C. Sherwood

The mammalian neocortex contains a great variety of neuronal types. In particular, recent studies have shown substantial morphological diversity among spiny projecting neurons in species that diverged close to the base of the mammalian radiation (e.g., monotremes, afrotherians, and xenarthrans). Here, we used a Golgi technique to examine different neuronal morphologies in an afrotherian species, the rock hyrax (Procavia capensis), and provide a comparison with the related African elephant (Loxodonta africana). Results showed that spiny neurons in the rock hyrax neocortex exhibit less morphological variation than in elephants, displaying a higher frequency of relatively “typical” pyramidal neurons. A quantitative comparison of rock hyrax pyramidal neuron morphology between frontal and visual areas, moreover, revealed greater spine density of neurons in frontal cortex, but no differences in other morphological aspects. Regional variations in pyramidal structure have also been observed in the African elephant, as well as a number of primate species.


The Journal of Comparative Neurology | 2014

Variable temporoinsular cortex neuroanatomy in primates suggests a bottleneck effect in eastern gorillas

Sarah K. Barks; Amy L. Bauernfeind; Christopher J. Bonar; Michael R. Cranfield; Alexandra A. de Sousa; Joseph M. Erwin; William D. Hopkins; Albert H. Lewandowski; Antoine Mudakikwa; Kimberley A. Phillips; Mary Ann Raghanti; Cheryl D. Stimpson; Patrick R. Hof; Karl Zilles; Chet C. Sherwood

We describe an atypical neuroanatomical feature present in several primate species that involves a fusion between the temporal lobe (often including Heschls gyrus in great apes) and the posterior dorsal insula, such that a portion of insular cortex forms an isolated pocket medial to the Sylvian fissure. We assessed the frequency of this fusion in 56 primate species (including apes, Old World monkeys, New World monkeys, and strepsirrhines) by using either magnetic resonance images or histological sections. A fusion between temporal cortex and posterior insula was present in 22 species (seven apes, two Old World monkeys, four New World monkeys, and nine strepsirrhines). The temporoinsular fusion was observed in most eastern gorilla (Gorilla beringei beringei and G. b. graueri) specimens (62% and 100% of cases, respectively) but was seen less frequently in other great apes and was never found in humans. We further explored the histology of this fusion in eastern gorillas by examining the cyto‐ and myeloarchitecture within this region and observed that the degree to which deep cortical layers and white matter are incorporated into the fusion varies among individuals within a species. We suggest that fusion between temporal and insular cortex is an example of a relatively rare neuroanatomical feature that has become more common in eastern gorillas, possibly as the result of a population bottleneck effect. Characterizing the phylogenetic distribution of this morphology highlights a derived feature of these great apes. J. Comp. Neurol. 522:844–860, 2014.

Collaboration


Dive into the Amy L. Bauernfeind's collaboration.

Top Co-Authors

Avatar

Patrick R. Hof

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Chet C. Sherwood

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Cheryl D. Stimpson

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Serena Bianchi

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Ely

Holloman Air Force Base

View shared research outputs
Researchain Logo
Decentralizing Knowledge