Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy L. Breen is active.

Publication


Featured researches published by Amy L. Breen.


Environmental Research Letters | 2016

Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

Benjamin W. Abbott; Jeremy B. Jones; Edward A. G. Schuur; F. Stuart Chapin; William B. Bowden; M. Syndonia Bret-Harte; Howard E. Epstein; Mike D. Flannigan; Tamara K. Harms; Teresa N. Hollingsworth; Michelle C. Mack; A. David McGuire; Susan M. Natali; Adrian V. Rocha; Suzanne E. Tank; Merritt R. Turetsky; Jorien E. Vonk; Kimberly P. Wickland; George R. Aiken; Heather D. Alexander; Rainer M. W. Amon; Brian W. Benscoter; Yves Bergeron; Kevin Bishop; Olivier Blarquez; Ben Bond-Lamberty; Amy L. Breen; Ishi Buffam; Yihua Cai; Christopher Carcaillet

As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release w ...


Environmental Research Letters | 2012

The footprint of Alaskan tundra fires during the past half-century : implications for surface properties and radiative forcing

Adrian V. Rocha; Michael M. Loranty; Philip E. Higuera; Michelle C. Mack; Feng Sheng Hu; Benjamin M. Jones; Amy L. Breen; Edward B. Rastetter; Scott J. Goetz; Gaius R. Shaver

Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required.


Environmental Research Letters | 2013

Modeling the effects of fire severity and climate warming on active layer thickness and soil carbon storage of black spruce forests across the landscape in interior Alaska

Hélène Genet; A. D. McGuire; Kirsten Barrett; Amy L. Breen; Eugénie S. Euskirchen; Jill F. Johnstone; Eric S. Kasischke; April M. Melvin; Alec Bennett; Michelle C. Mack; T. S. Rupp; A.E.G. Schuur; Merritt R. Turetsky; Fengming Yuan

There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer


Global Change Biology | 2016

Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland.

Mark J. Lara; Hélène Genet; A. D. McGuire; Eugénie S. Euskirchen; Yujin Zhang; Dana R. N. Brown; M. T. Jorgenson; Vladimir E. Romanovsky; Amy L. Breen; William R. Bolton

Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana Flats in central Alaska for centuries, as thawing permafrost collapses forests that transition to wetlands. Located within the discontinuous permafrost zone, this region has significantly warmed over the past half-century, and much of these carbon-rich permafrost soils are now within ~0.5 °C of thawing. Increased permafrost thaw in lowland boreal forests in response to warming may have consequences for the climate system. This study evaluates the trajectories and potential drivers of 60 years of forest change in a landscape subjected to permafrost thaw in unburned dominant forest types (paper birch and black spruce) associated with location on elevated permafrost plateau and across multiple time periods (1949, 1978, 1986, 1998, and 2009) using historical and contemporary aerial and satellite images for change detection. We developed (i) a deterministic statistical model to evaluate the potential climatic controls on forest change using gradient boosting and regression tree analysis, and (ii) a 30 × 30 m land cover map of the Tanana Flats to estimate the potential landscape-level losses of forest area due to thermokarst from 1949 to 2009. Over the 60-year period, we observed a nonlinear loss of birch forests and a relatively continuous gain of spruce forest associated with thermokarst and forest succession, while gradient boosting/regression tree models identify precipitation and forest fragmentation as the primary factors controlling birch and spruce forest change, respectively. Between 1950 and 2009, landscape-level analysis estimates a transition of ~15 km² or ~7% of birch forests to wetlands, where the greatest change followed warm periods. This work highlights that the vulnerability and resilience of lowland ice-rich permafrost ecosystems to climate changes depend on forest type.


New Phytologist | 2009

Nucleotide diversity among natural populations of a North American poplar (Populus balsamifera, Salicaceae)

Amy L. Breen; Elise Glenn; Adam Yeager; Matthew S. Olson

Poplars (Populus spp.) comprise an important component of circumpolar boreal forest ecosystems and are the model species for tree genomics. In this study, we surveyed genetic variation and population differentiation in three nuclear genes among populations of balsam poplar (Populus balsamifera) in North America. We examined nucleotide sequence variation in alcohol dehydrogenase 1 (Adh1) and glyceraldehyde 3-phosphate dehydrogenase (G3pdh), two well-studied nuclear loci in plants, and abscisic acid insensitivity 1B (ABI1B), a locus coincident with timing of seasonal dormancy in quantitative trait locus (QTL) studies of hybrid poplars. We compared estimates of baseline population genetic parameters for these loci with those obtained in studies of other poplar species, particularly European aspen (Populus tremula). Average pairwise nucleotide diversity (pi(tot) = 0.00216-0.00353) was equivalent to that in Populus trichocarpa, but markedly less than that in P. tremula. Elevated levels of population structure were observed in ABI1B between the northern and southern regions (F(CT) = 0.184, P < 0.001) and among populations (F(ST) = 0.256, P < 0.001). These results suggest that geographic or taxonomic factors are important for understanding patterns of variation throughout the genus Populus. Our findings have the potential to aid in the design of sampling regimes for conservation and breeding stock and contribute to historical inferences regarding the factors that shaped the genetic diversity of boreal plant species.


Environmental Research Letters | 2016

Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data

Donald A. Walker; F. J. A. Daniels; Inger Greve Alsos; Uma S. Bhatt; Amy L. Breen; Marcel Buchhorn; Helga Bültmann; Lisa A. Druckenmiller; Mary E. Edwards; Dorothee Ehrich; Howard E. Epstein; William A. Gould; Rolf A. Ims; Hans Meltofte; Martha K. Raynolds; Jozef Šibík; Stephen S. Talbot; Patrick J. Webber

Satellite-derived remote-sensing products are providing a modern circumpolar perspective of Arctic vegetation and its changes, but this new view is dependent on a long heritage of ground-based observations in the Arctic. Several products of the Conservation of Arctic Flora and Fauna are key to our current understanding. We review aspects of the PanArctic Flora, the Circumpolar Arctic Vegetation Map, the Arctic Biodiversity Assessment, and the Arctic Vegetation Archive (AVA) as they relate to efforts to describe and map the vegetation, plant biomass, and biodiversity of the Arctic at circumpolar, regional, landscape and plot scales. Cornerstones for all these tools are ground-based plant-species and plant-community surveys. The AVA is in progress and will store plot-based vegetation observations in a public-accessible database for vegetation classification, modeling, diversity studies, and other applications. We present the current status of the Alaska Arctic Vegetation Archive (AVA-AK), as a regional example for the panarctic archive, and with a roadmap for a coordinated international approach to survey, archive and classify Arctic vegetation. We note the need for more consistent standards of plot-based observations, and make several recommendations to improve the linkage between plot-based observations biodiversity studies and satellite-based observations of Arctic vegetation.


Molecular Ecology | 2015

Genomics in a changing arctic: critical questions await the molecular ecologist

Stan D. Wullschleger; Amy L. Breen; Colleen M. Iversen; Matthew S. Olson; Torgny Näsholm; Ulrika Ganeteg; Matthew D. Wallenstein; David J. Weston

Molecular ecology is poised to tackle a host of interesting questions in the coming years. The Arctic provides a unique and rapidly changing environment with a suite of emerging research needs that can be addressed through genetics and genomics. Here we highlight recent research on boreal and tundra ecosystems and put forth a series of questions related to plant and microbial responses to climate change that can benefit from technologies and analytical approaches contained within the molecular ecologists toolbox. These questions include understanding (i) the mechanisms of plant acquisition and uptake of N in cold soils, (ii) how these processes are mediated by root traits, (iii) the role played by the plant microbiome in cycling C and nutrients within high‐latitude ecosystems and (iv) plant adaptation to extreme Arctic climates. We highlight how contributions can be made in these areas through studies that target model and nonmodel organisms and emphasize that the sequencing of the Populus and Salix genomes provides a valuable resource for scientific discoveries related to the plant microbiome and plant adaptation in the Arctic. Moreover, there exists an exciting role to play in model development, including incorporating genetic and evolutionary knowledge into ecosystem and Earth System Models. In this regard, the molecular ecologist provides a valuable perspective on plant genetics as a driver for community biodiversity, and how ecological and evolutionary forces govern community dynamics in a rapidly changing climate.


Applied Vegetation Science | 2018

Vegetation on mesic loamy and sandy soils along a 1700-km maritime Eurasia Arctic Transect

Donald A. Walker; Howard E. Epstein; Jozef Šibík; Uma S. Bhatt; Vladimir E. Romanovsky; Amy L. Breen; Silvia Chasnikova; Ronald Daanen; Lisa A. Druckenmiller; Ksenia Ermokhina; Bruce C. Forbes; Gerald V. Frost; József Geml; Elina Kaarlejärvi; Olga Khitun; Artem Khomutov; Timo Kumpula; Patrick Kuss; Georgy Matyshak; Natalya Moskalenko; Pavel Orekhov; Jana Peirce; Martha K. Raynolds; Ina Timling

Abstract Questions How do plant communities on zonal loamy vs. sandy soils vary across the full maritime Arctic bioclimate gradient? How are plant communities of these areas related to existing vegetation units of the European Vegetation Classification? What are the main environmental factors controlling transitions of vegetation along the bioclimate gradient? Location 1700‐km Eurasia Arctic Transect (EAT), Yamal Peninsula and Franz Josef Land (FJL), Russia. Methods The Braun‐Blanquet approach was used to sample mesic loamy and sandy plots on 14 total study sites at six locations, one in each of the five Arctic bioclimate subzones and the forest–tundra transition. Trends in soil factors, cover of plant growth forms (PGFs) and species diversity were examined along the summer warmth index (SWI) gradient and on loamy and sandy soils. Classification and ordination were used to group the plots and to test relationships between vegetation and environmental factors. Results Clear, mostly non‐linear, trends occurred for soil factors, vegetation structure and species diversity along the climate gradient. Cluster analysis revealed seven groups with clear relationships to subzone and soil texture. Clusters at the ends of the bioclimate gradient (forest–tundra and polar desert) had many highly diagnostic taxa, whereas clusters from the Yamal Peninsula had only a few. Axis 1 of a DCA was strongly correlated with latitude and summer warmth; Axis 2 was strongly correlated with soil moisture, percentage sand and landscape age. Conclusions Summer temperature and soil texture have clear effects on tundra canopy structure and species composition, with consequences for ecosystem properties. Each layer of the plant canopy has a distinct region of peak abundance along the bioclimate gradient. The major vegetation types are weakly aligned with described classes of the European Vegetation Checklist, indicating a continuous floristic gradient rather than distinct subzone regions. The study provides ground‐based vegetation data for satellite‐based interpretations of the western maritime Eurasian Arctic, and the first vegetation data from Hayes Island, Franz Josef Land, which is strongly separated geographically and floristically from the rest of the gradient and most susceptible to on‐going climate change.


Journal of Geophysical Research | 2013

Identification of unrecognized tundra fire events on the north slope of Alaska

Benjamin M. Jones; Amy L. Breen; Benjamin V. Gaglioti; Daniel H. Mann; Adrian V. Rocha; Guido Grosse; Christopher D. Arp; Michael L. Kunz; Donald A. Walker


Journal of Biogeography | 2012

Genetic consequences of glacial survival: the late Quaternary history of balsam poplar (Populus balsamifera L.) in North America

Amy L. Breen; David F. Murray; Matthew S. Olson

Collaboration


Dive into the Amy L. Breen's collaboration.

Top Co-Authors

Avatar

Donald A. Walker

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Alec Bennett

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Eugénie S. Euskirchen

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Hélène Genet

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar

Martha K. Raynolds

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. D. McGuire

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tom Kurkowski

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge