Amy L. Filby
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amy L. Filby.
Biology of Reproduction | 2005
Amy L. Filby; Charles R. Tyler
Abstract There are two estrogen receptor (ER) subtypes in fish, Esr1 and Esr2 (formerly ERα and ERβ), and in some species the Esr2 subtype has two forms, Esr2b (formerly ERβ1) and Esr2a (formerly ERβ2 or ERγ). There is little information, however, on the different characteristics and functional significance of the two receptor subtypes in fish, and this is especially relevant for understanding the disruption of ER signaling by chemicals with estrogenic activity. In this study, the full-length cDNAs for esr1 (3167 base pairs [bp]) and esr2b (2318 bp), and a partial-length (267 bp) cDNA for esr2a, were cloned and characterized in fathead minnow (fhm; Pimephales promelas), and their patterns of expression established during development and in adults. Real-time polymerase chain reaction revealed some clear distinctions in the ontogenic and tissue expression of fhm esr1, esr2b, and esr2a, suggesting different functions for each ER subtype. Fhm ERs were expressed in brain, pituitary, liver, gonad, intestine, and gill of male and female fish, esr2b and esr2a were also expressed in muscle. Fhm esr1 and esr2b were expressed predominantly in the liver, whereas fhm esr2a was expressed predominantly in intestine and was lowest expressed in liver. Responses of the different hepatic ERs in male fathead minnow exposed to 100 ng estradiol/L differed, with a significant induction (5-fold) of fhm esr1 but no effect on esr2b or esr2a expression, suggesting different mechanisms of regulation for the different ERs. The detailed characterization of ERs in fathead minnow provides the foundation for understanding the molecular basis of estrogenic disruption in fish.
Biology of Reproduction | 2008
Amy L. Filby; Ronny van Aerle; JanWillem Duitman; Charles R. Tyler
Abstract The mechanisms underlying the initiation of puberty in fish are poorly understood, and whether the Kiss1 receptor (Kiss1r; previously designated G protein-coupled receptor 54; GPR54) and its ligands, kisspeptins, play a significant role, as has been established in mammals, is not yet known. We determined (via real-time PCR) temporal patterns of expression in the brain of kiss1r, gnrh2, and gnrh3 and a suite of related genes in the hypothalamo-pituitary-gonadal (HPG) axis and analyzed them against the timing of gonadal germ cell development in male and female fathead minnow (Pimephales promelas). Full- or partial-length cDNAs for kiss1r (736 bp), gnrh2 (698 bp), and gnrh3 (804 bp) cloned from fathead minnow were found to be expressed only in the brain, testis, and ovary of adult fish. Localization of kiss1r, gnrh2, and gnrh3 within the brain provided evidence for their physiological roles and a likely hypophysiotropic role for GnRH3 in this species (which, like other cyprinids, does not appear to express gnrh1). In both sexes, kiss1r expression in the brain increased at the onset of puberty and reached maximal expression in males when spermatagonia type B appeared in the testis and in females when cortical alveolus-stage oocytes first appeared in the ovary, the timings of which differed for the two sexes. However, kiss1r expression was considerably lower during more advanced stages of spermatogenesis and oogenesis. The expression of kiss1r closely aligned with that of the gnrh genes (gnrh3 in particular), suggesting the Kiss1r/kisspeptin system in fish has a similar role in puberty to that occurring in mammals, and this hypothesis was supported by the induction of gnrh3 (2.25-fold) and kiss1r (1.5-fold) in early-mid pubertal fish injected with mammalian kisspeptin-10 (2 nmol/g wet weight). An intriguing finding, and contrasting that in mammals, was an elevated expression of esr1, ar, and cyp19a2 (genes involved in sex steroid signaling) in the brain at the onset of puberty, and in females slightly in advance of the elevation in the expression of kiss1r.
Environmental Health Perspectives | 2007
Amy L. Filby; Teresa Neuparth; Karen L. Thorpe; Richard Owen; Tamara S. Galloway; Charles R. Tyler
Background Environmental estrogens in wastewater treatment work (WwTW) effluents are well established as the principal cause of reproductive disruption in wild fish populations, but their possible role in the wider health effects of effluents has not been established. Objectives We assessed the contribution of estrogens to adverse health effects induced in a model fish species by exposure to WwTW effluents and compared effects of an estrogen alone and as part of a complex mixture (i.e., spiked into effluent). Methods Growth, genotoxic, immunotoxic, metabolic, and endocrine (feminized) responses were compared in fathead minnows (Pimephales promelas) exposed for 21 days to a potent estrogenic effluent, a weakly estrogenic effluent before and after spiking with a steroidal estrogen [17α-ethinyl-estradiol (EE2)], and to EE2 alone. Results In addition to endocrine disruption, effluent exposure induced genotoxic damage, modulated immune function, and altered metabolism; many of these effects were elicited in a sex-specific manner and were proportional to the estrogenic potencies of the effluents. A key finding was that some of the responses to EE2 were modified when it was present in a complex mixture (i.e., spiked into effluent), suggesting that mixture effects may not be easily modeled for effluent discharges or when the chemicals impact on a diverse array of biological axes. Conclusion These data reveal a clear link between estrogens present in effluents and diverse, adverse, and sex-related health impacts. Our findings also highlight the need for an improved understanding of interactive effects of chemical toxicants on biological systems for understanding health effects of environmental mixtures.
Zebrafish | 2010
Gregory C. Paull; Amy L. Filby; Hannah G. Giddins; Tobias S. Coe; Patrick B. Hamilton; Charles R. Tyler
The zebrafish has considerable potential for use as a model in the study of behavior in social systems, particularly dominance hierarchies, which are widespread in nature and can affect the lifelong success of individuals. There is, however, a paucity of information relating to the characterization of social groups and significance of dominance hierarchies in the zebrafish model. This study set out to bridge this knowledge gap and better characterize dominance and its implications for reproductive success in both male and female zebrafish in colonies comprising of two males and two females. Analyses of four aggressive behaviors (chase, bite, repel, spar) were conducted twice daily over a 5-day period, and fertilized eggs were collected for parentage analyses using DNA microsatellite markers. Dominant-subordinate relationships occurred both between males and between females, and in both sexes, dominance was associated with a greater body size and higher levels of aggression. During the spawning period, dominant females were, however, less aggressive toward their subordinates than dominant males to their subordinates. Aggressive behaviors employed for maintaining dominance did not differ between the sexes, but in females, in contrast with males, the level of aggression directed toward the subordinate fish increased over the study period. Overall, dominance resulted in a greater total reproductive success in males but not in females; however, dominant females sired more offspring with the dominant male. The findings illustrate that energy invested in dominance behavior appears beneficial for both sexes in zebrafish.
BMC Genomics | 2010
Amy L. Filby; Gregory C. Paull; Tamsin Fa Hickmore; Charles R. Tyler
BackgroundAggression is a near-universal behaviour with substantial influence on and implications for human and animal social systems. The neurophysiological basis of aggression is, however, poorly understood in all species and approaches adopted to study this complex behaviour have often been oversimplified. We applied targeted expression profiling on 40 genes, spanning eight neurological pathways and in four distinct regions of the brain, in combination with behavioural observations and pharmacological manipulations, to screen for regulatory pathways of aggression in the zebrafish (Danio rerio), an animal model in which social rank and aggressiveness tightly correlate.ResultsSubstantial differences occurred in gene expression profiles between dominant and subordinate males associated with phenotypic differences in aggressiveness and, for the chosen gene set, they occurred mainly in the hypothalamus and telencephalon. The patterns of differentially-expressed genes implied multifactorial control of aggression in zebrafish, including the hypothalamo-neurohypophysial-system, serotonin, somatostatin, dopamine, hypothalamo-pituitary-interrenal, hypothalamo-pituitary-gonadal and histamine pathways, and the latter is a novel finding outside mammals. Pharmacological manipulations of various nodes within the hypothalamo-neurohypophysial-system and serotonin pathways supported their functional involvement. We also observed differences in expression profiles in the brains of dominant versus subordinate females that suggested sex-conserved control of aggression. For example, in the HNS pathway, the gene encoding arginine vasotocin (AVT), previously believed specific to male behaviours, was amongst those genes most associated with aggression, and AVT inhibited dominant female aggression, as in males. However, sex-specific differences in the expression profiles also occurred, including differences in aggression-associated tryptophan hydroxylases and estrogen receptors.ConclusionsThus, through an integrated approach, combining gene expression profiling, behavioural analyses, and pharmacological manipulations, we identified candidate genes and pathways that appear to play significant roles in regulating aggression in fish. Many of these are novel for non-mammalian systems. We further present a validated system for advancing our understanding of the mechanistic underpinnings of complex behaviours using a fish model.
Aquatic Toxicology | 2010
Tamsyn Uren-Webster; Ceri Lewis; Amy L. Filby; Gregory C. Paull; Eduarda M. Santos
Phthalates are ubiquitous in the aquatic environment and are known to adversely affect male reproductive health in mammals through interactions with multiple receptor systems. However, little is known about the risks they pose to fish. This project investigated the effects of di(2-ethylhexyl) phthalate (DEHP), the most commonly used phthalate, on the reproductive health of male zebrafish (Danio rerio). Males were treated with 0.5, 50 and 5000 mg DEHP kg(-1) (body weight) for a period of 10 days via intraperitoneal injection. The effects of the exposure were assessed by analysing fertilisation success, testis histology, sperm DNA integrity and transcript profiles of the liver and testis. A significant increase in the hepatosomatic index and levels of hepatic vitellogenin transcript were observed following exposure to 5000 mg DEHP kg(-1). Exposure to 5000 mg DEHP kg(-1) also resulted in a reduction in fertilisation success of oocytes spawned by untreated females. However, survival and development of the resulting embryos were unaffected by all treatments, and no evidence of DEHP-induced sperm DNA damage was observed. Exposure to 50 and 5000 mg DEHP kg(-1) caused alterations in the proportion of germ cells at specific stages of spermatogenesis in the testis, including a reduction in the proportion of spermatozoa and an increase in the proportion of spermatocytes, suggesting that DEHP may inhibit the progression of meiosis. In parallel, exposure to 5000 mg DEHP kg(-1) increased the levels of two peroxisome proliferator-activated receptor (PPAR) responsive genes (acyl-coenzyme A oxidase 1 (acox1) and enoyl-coenzyme A, hydratase/3-hydroxyacyl coenzyme A dehydrogenase (ehhadh). These data demonstrated that exposure to high concentrations of DEHP disrupts spermatogenesis in adult zebrafish with a consequent decrease in their ability to fertilise oocytes spawned by untreated females. Furthermore, our data suggest that the adverse effects caused by exposure to DEHP are likely to occur preferentially via PPAR signalling pathways in the testis and oestrogen signalling pathways in the liver. We found no evidence of adverse effects on zebrafish reproductive health following exposure to the concentrations occurring in most aquatic systems, indicating that DEHP alone may not be a causative agent of the reproductive abnormalities seen in wildlife, at least as a result of short-term exposures.
Physiology & Behavior | 2010
Amy L. Filby; Gregory C. Paull; Emily J. Bartlett; Katrien J.W. Van Look; Charles R. Tyler
Social status affects access to food, mates and shelter and has consequences for the physiology of individuals and their health status. In the zebrafish (Danio rerio), an emerging model for studies into animal behavior, the possible consequences of social hierarchy to an individuals physiology and health are unknown. To address this, in this species we assessed the effects of social interaction (for periods of 1-5days) on growth, stress, immune function and reproductive condition. Wide-ranging differences in physiology occurred between the social ranks, some of which were sex-related and time-dependent. In both sexes, dominant fish were larger than subordinates and dominant males had a higher growth rate during the trials. Subordinates had higher plasma cortisol and in males higher telencephalic corticotrophin-releasing hormone, neuropeptide y and glucocorticoid receptor gene expression. Splenic cytokine expression suggested differences in immune status between ranks in both sexes and hematocrit was elevated in subordinate males. In both sexes, dominants and subordinates differed in the expression of genes for various gonadal sex steroid receptors and steroidogenic enzymes and in dominant females the ovary was larger relative to body mass compared with in subordinates. Dominant males had higher plasma 11-ketotestosterone than subordinates and there was an increase in the number of spermatids in their testes over the duration of the study that was not seen in subordinate males. The wide-ranging physiological differences seen between dominant and subordinate zebrafish as a consequence of their social status suggest negative health impacts for subordinates after prolonged durations in those hierarchies.
Environmental Science & Technology | 2010
Amy L. Filby; Janice A. Shears; Briane E. Drage; John H. Churchley; Charles R. Tyler
Whether the implementation of additional treatments for the removal of estrogens from wastewater treatment works (WwTWs) effluents will eliminate their feminizing effects in exposed wildlife has yet to be established, and this information is crucial for future decisions on investment into WwTWs. Here, granular activated carbon (GAC), ozone (O(3)), and chlorine dioxide (ClO(2)) were investigated for their effectiveness in reducing steroidal estrogen levels in a WwTW effluent and assessments made on the associated estrogenic and reproductive responses in fathead minnows (Pimephales promelas) exposed for 21 days. All treatments reduced the estrogenicity of the standard-treated (STD) effluent, but with different efficacies; ranging between 70-100% for total estrogenicity and 53-100% for individual steroid estrogens. In fish exposed to the GAC- and ClO(2)- (but not O(3)-) treated effluents, there was no induction of plasma vitellogenin (VTG) or reduction in the weight of the fatpad, a secondary sex character in males, as occurred for fish exposed to STD effluent. This finding suggests likely benefits of employing these treatment processes for the reproductive health in wild fish populations living in rivers receiving WwTW discharges. Exposure of pair-breeding minnows to the GAC-treated effluent, however, resulted in a similar inhibition of egg production to that occurring for exposure to the STD effluent (34-40%). These data, together with a lack of effect on egg production of the estrogen, ethinylestradiol (10 ng/L), alone, suggest that chemical/physical properties of the effluents rather than their estrogenicity were responsible for the reproductive effect and that these factor(s) were not remediated for through GAC treatment. Collectively, our findings illustrate the importance of assessing integrative biological responses, rather than biomarkers alone, in the assessment and improvement of WwTW technologies for the protection of wild fish populations.
Environmental Science & Technology | 2012
Amy L. Filby; Gregory C. Paull; Faye Searle; Maren Ortiz‐Zarragoitia; Charles R. Tyler
Environmental estrogens have been shown to affect aspects of fish behavior that could potentially impact on wild populations, but the physiological mechanisms underpinning these effects are unknown. Using small colonies of zebrafish (Danio rerio), we evaluated the impacts of estrogen exposure on the aggression of dominant males, the associated implications for their social status and reproductive success, and their signaling mechanisms. The aggression of dominant males exposed to 17α-ethinylestradiol (EE(2); 10 ng/L nominal) was reduced significantly, and half of these fish subsequently lost their dominance, behavioral changes that were reflected in their reproductive success. Plasma androgen and the expression of genes involved in sex steroid production/signaling (cyp19a1b, cyp17, hsd11b2, hsd17b3, ar) and aggression (avplrv1b, tph1b, htr1a, sst1, sstr1, th, slc6a3, ar) were higher in control dominant versus subordinate males, but suppressed by EE(2) exposure, such that the differences between the social ranks were not retained. The expression levels of avpl (brain), which promotes aggression and dominance, and ar and cyp17 (gonad) were elevated in nonexposed males paired with EE(2)-exposed males. Our findings illustrate that disruptions of behaviors affecting social hierarchy, and in turn breeding outcome, as a consequence of exposure to an environmental estrogen are signaled through complex interconnecting gonadal and neurological control mechanisms that generally conform with those established in mammalian models. The extensive molecular, genetic, physiological, and behavioral toolbox now available for the zebrafish makes this species an attractive model for integrated analyses of chemical effects spanning behavior to molecular effect mechanisms.
Environmental Biology of Fishes | 2009
Gregory C. Paull; Amy L. Filby; Charles R. Tyler
Many environmental factors have been shown to influence sex differentiation in fish, resulting in sex-biased populations, but the effects of growth rate have received limited attention. We conducted a controlled laboratory experiment in which growth rate and population density were manipulated in roach (Rutilus rutilus) during early development, and the subsequent effects on sex ratio determined. Significant differences in growth rate between fish populations were induced through provision of three different ration levels. In the slowest growing population there were fewer females compared within the fastest growing population (19% compared to 36% females), suggesting that in roach it may be more advantageous to become a small male than a small female when growth potential is limited. This may result from the fact that fecundity is limited by body size in female roach and that male roach are able to reproduce at a significantly smaller body size than females. In contrast, where roach were kept at different stocking densities, and there were no differences in growth rate, the subsequent proportion of females did not vary. Our data highlight the importance of controlling for growth rate in research on sexual differentiation in this species, notably when assessing for the effects of endocrine disrupting chemicals and other environmental factors, and have implications for fisheries management and aquaculture. The underlying mechanism for the influence of growth rate on sex differentiation has yet to be determined but is likely to have a strong endocrinological basis.