Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen L. Thorpe is active.

Publication


Featured researches published by Karen L. Thorpe.


Environmental Health Perspectives | 2009

Statistical modeling suggests that antiandrogens in effluents from wastewater treatment works contribute to widespread sexual disruption in fish living in English rivers

Susan Jobling; Robert W. Burn; Karen L. Thorpe; Richard J. Williams; Charles R. Tyler

Background The widespread occurrence of feminized male fish downstream of some wastewater treatment works has led to substantial interest from ecologists and public health professionals. This concern stems from the view that the effects observed have a parallel in humans, and that both phenomena are caused by exposure to mixtures of contaminants that interfere with reproductive development. The evidence for a “wildlife–human connection” is, however, weak: Testicular dysgenesis syndrome, seen in human males, is most easily reproduced in rodent models by exposure to mixtures of antiandrogenic chemicals. In contrast, the accepted explanation for feminization of wild male fish is that it results mainly from exposure to steroidal estrogens originating primarily from human excretion. Objectives We sought to further explore the hypothesis that endocrine disruption in fish is multicausal, resulting from exposure to mixtures of chemicals with both estrogenic and antiandrogenic properties. Methods We used hierarchical generalized linear and generalized additive statistical modeling to explore the associations between modeled concentrations and activities of estrogenic and antiandrogenic chemicals in 30 U.K. rivers and feminized responses seen in wild fish living in these rivers. Results In addition to the estrogenic substances, antiandrogenic activity was prevalent in almost all treated sewage effluents tested. Further, the results of the modeling demonstrated that feminizing effects in wild fish could be best modeled as a function of their predicted exposure to both antiandrogens and estrogens or to antiandrogens alone. Conclusion The results provide a strong argument for a multicausal etiology of widespread feminization of wild fish in U.K. rivers involving contributions from both steroidal estrogens and xenoestrogens and from other (as yet unknown) contaminants with antiandrogenic properties. These results may add further credence to the hypothesis that endocrine-disrupting effects seen in wild fish and in humans are caused by similar combinations of endocrine-disrupting chemical cocktails.


Environmental Health Perspectives | 2007

Health Impacts of Estrogens in the Environment, Considering Complex Mixture Effects

Amy L. Filby; Teresa Neuparth; Karen L. Thorpe; Richard Owen; Tamara S. Galloway; Charles R. Tyler

Background Environmental estrogens in wastewater treatment work (WwTW) effluents are well established as the principal cause of reproductive disruption in wild fish populations, but their possible role in the wider health effects of effluents has not been established. Objectives We assessed the contribution of estrogens to adverse health effects induced in a model fish species by exposure to WwTW effluents and compared effects of an estrogen alone and as part of a complex mixture (i.e., spiked into effluent). Methods Growth, genotoxic, immunotoxic, metabolic, and endocrine (feminized) responses were compared in fathead minnows (Pimephales promelas) exposed for 21 days to a potent estrogenic effluent, a weakly estrogenic effluent before and after spiking with a steroidal estrogen [17α-ethinyl-estradiol (EE2)], and to EE2 alone. Results In addition to endocrine disruption, effluent exposure induced genotoxic damage, modulated immune function, and altered metabolism; many of these effects were elicited in a sex-specific manner and were proportional to the estrogenic potencies of the effluents. A key finding was that some of the responses to EE2 were modified when it was present in a complex mixture (i.e., spiked into effluent), suggesting that mixture effects may not be easily modeled for effluent discharges or when the chemicals impact on a diverse array of biological axes. Conclusion These data reveal a clear link between estrogens present in effluents and diverse, adverse, and sex-related health impacts. Our findings also highlight the need for an improved understanding of interactive effects of chemical toxicants on biological systems for understanding health effects of environmental mixtures.


Environmental Health Perspectives | 2005

An assessment of the model of concentration addition for predicting the estrogenic activity of chemical mixtures in wastewater treatment works effluents.

Karen L. Thorpe; Melanie Gross-Sorokin; Ian Johnson; Geoff Brighty; Charles R. Tyler

The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured concentrations were used to predict the estrogenic activity of each effluent, employing the model of CA, based on the relative potencies of the individual chemicals in an in vitro recombinant yeast estrogen screen (rYES) and a short-term (14-day) in vivo rainbow trout vitellogenin induction assay. Based on the measured concentrations of the four chemicals in the effluents and their relative potencies in each assay, the calculated in vitro and in vivo responses compared well and ranged between 3.5 and 87 ng/L of estradiol equivalents (E2 EQ) for the different effluents. In the rYES, however, the measured E2 EQ concentrations in the effluents ranged between 0.65 and 43 ng E2 EQ/L, and they varied against those predicted by the CA model. Deviations in the estimation of the estrogenic potency of the effluents by the CA model, compared with the measured responses in the rYES, are likely to have resulted from inaccuracies associated with the measurement of the chemicals in the extracts derived from the complex effluents. Such deviations could also result as a consequence of interactions between chemicals present in the extracts that disrupted the activation of the estrogen response elements in the rYES. E2 EQ concentrations derived from the vitellogenic response in fathead minnows exposed to a series of effluent dilutions were highly comparable with the E2 EQ concentrations derived from assessments of the estrogenic potency of these dilutions in the rYES. Together these data support the use of bioassays for determining the estrogenic potency of WwTW effluents, and they highlight the associated problems for modeling approaches that are reliant on measured concentrations of estrogenic chemicals.


PLOS ONE | 2013

Characteristic and Functional Analysis of Toll-like Receptors (TLRs) in the lophotrocozoan, Crassostrea gigas, Reveals Ancient Origin of TLR-Mediated Innate Immunity

Yang Zhang; Xiaocui He; Feng Yu; Zhiming Xiang; Jun Li; Karen L. Thorpe; Ziniu Yu

The evolution of TLR-mediated innate immunity is a fundamental question in immunology. Here, we report the characterization and functional analysis of four TLR members in the lophotrochozoans Crassostrea gigas (CgTLRs). All CgTLRs bear a conserved domain organization and have a close relationship with TLRs in ancient non-vertebrate chordates. In HEK293 cells, every CgTLR could constitutively activate NF-κB responsive reporter, but none of the PAMPs tested could stimulate CgTLR-activated NF-κB induction. Subcellular localization showed that CgTLR members have similar and dual distribution on late endosomes and plasma membranes. Moreover, CgTLRs and CgMyD88 mRNA show a consistent response to multiple PAMP challenges in oyster hemocytes. As CgTLR-mediated NF-κB activation is dependent on CgMyD88, we designed a blocking peptide for CgTLR signaling that would inhibit CgTLR-CgMyD88 dependent NF-κB activation. This was used to demonstrate that a Vibrio parahaemolyticus infection-induced enhancement of degranulation and increase of cytokines TNF mRNA in hemocytes, could be inhibited by blocking CgTLR signaling. In summary, our study characterized the primitive TLRs in the lophotrocozoan C . gigas and demonstrated a fundamental role of TLR signaling in infection-induced hemocyte activation. This provides further evidence for an ancient origin of TLR-mediated innate immunity.


Environmental Toxicology and Chemistry | 2003

Dynamics of estrogen biomarker responses in rainbow trout exposed to 17β-estradiol and 17α-ethinylestradiol

Emma Thomas-Jones; Karen L. Thorpe; Nicola Harrison; Gethin Thomas; Ceri A. Morris; Thomas H. Hutchinson; Stuart Woodhead; Charles R. Tyler

We have investigated the response dynamics of the estrogen-dependent genes vitellogenin (VTG) and the vitelline envelope proteins (VEPs) as well as circulating VTG in immature female rainbow trout (Oncorhynchus mykiss) exposed to 17β-estradiol (E2) and 17α-efhinylestradiol (EE2) for periods of 7 and 14 d. Gene responses were quantified by measurement of messenger RNA (mRNA) in liver extracts using a chemiluminescent hybridization protection assay. Circulating VTG was measured by a homologous enzyme-linked immunosorbent assay. Exposure to both E2 and EE2 induced concentration-dependent increases in all biomarkers. The data presented indicate that VEP genes may be more sensitive to estrogens than the VTG gene. The biomarker lowest-observed-effect concentrations (biomarkerLOEC) in the 14-d study with E2 were 14 ng/L (VTG protein, VTG mRNA, VEPβ, and VEPγ) or 4.8 ng/L (VEPα). The EE2 was 5- to 66-fold more potent depending on the biomarker studied. In the 7-d study, all biomarkers were elevated after 48-h exposure to E2, with biomarkerLOECs of 30 ng/L (VTG protein, VTG mRNA, and VEPγ) or 9.7 ng/L (VEPα and VEPβ). Vitellogenin mRNA was induced up to 1,000-fold above baseline, and this translated into an increase of approximately 50,000-fold in circulating VTG. In conclusion, all biomarkers responded to estrogen exposure at environmentally relevant concentrations.


Science of The Total Environment | 2010

Short-term exposure to the environmentally relevant estrogenic mycotoxin zearalenone impairs reproduction in fish

Patrick Schwartz; Karen L. Thorpe; Thomas D. Bucheli; Felix E. Wettstein; Patricia Burkhardt-Holm

Zearalenone (ZON) is one of the worldwide most common mycotoxins and exhibits estrogenic activity in the range of natural steroid estrogens such as 17β-estradiol (E2). The occurrence of ZON has been reported in drainage water, soil, wastewater effluents and rivers, but its ecotoxicological effects on fish have hardly been investigated. In this study the estrogenic potency of the ZON was compared to E2 in a recombinant yeast estrogen screen (rYES) and the effects of waterborne ZON exposure on reproduction, physiology and morphology of zebrafish (Danio rerio) were investigated in a 42-day reproduction experiment. E2 as well as ZON evoked a sigmoid concentration-response curve in the rYES with a mean EC(50) of 2 and 500 μg/L, respectively, resulting in an E2:ZON EC(50) ratio of 1:250. Exposure to ZON for 21 days reduced relative spawning frequency at 1000 and 3200 ng/L to 38.9 and 37.6%, respectively, and relative fecundity at 100, 320, 1000 and 3200 ng/L to 74.2, 41.7, 43.8 and 16.7%, respectively, in relation to the 21-day pre-exposure period. A 4.4 and 8.1 fold induction of plasma vitellogenin (VTG) was observed in male zebrafish at 1000 and 3200 ng/L ZON, respectively. Exposure to ZON did not affect fertility, hatch, embryo survival and gonad morphology of zebrafish. The results of this study demonstrate that although ZON possesses a moderate estrogenic potency in vitro, it exhibits a comparably strong effect on induction of VTG and reproduction in vivo. This indicates that ZON might contribute to the overall estrogenic activity in the environment and could therefore pose a risk for wild fish in their natural habitat.


Aquatic Toxicology | 2013

Immunotoxic effects of oil sands-derived naphthenic acids to rainbow trout

Gillian Z. MacDonald; Natacha S. Hogan; Bernd Köllner; Karen L. Thorpe; Laura J. Phalen; Brian D. Wagner; Michael R. van den Heuvel

Naphthenic acids are the major organic constituents in waters impacted by oil sands. To investigate their immunotoxicity, rainbow trout (Oncorhynchus mykiss) were injected with naphthenic acids extracted from aged oil sands tailings water. In two experiments, rainbow trout were injected intraperitoneally with 0, 10, or 100 mg/kg of naphthenic acids, and sampled after 5 or 21 d. Half of the fish from the 21 d exposure were co-exposed to inactivated Aeromonas salmonicida (A.s.) to induce an immune response. A positive control experiment was conducted using an intraperitoneal injection of 100 mg/kg of benzo[a]pyrene, a known immune suppressing compound. T-lymphocytes, B-lymphocytes, thrombocytes, and myeloid cells were counted in blood and lymphatic tissue using flow cytometry. In the 5d exposure, there was a reduction in blood leucocytes and spleen thrombocytes at the 100 mg/kg dose. However, at 21 d, leucocyte populations showed no effects of exposure with the exception that spleen thrombocyte populations increase at the 100 mg/kg dose. In the 21 d exposure, B- and T-lymphocytes in blood showed a significant Dose × A.s. interaction, indicating stimulated blood cell proliferation due to naphthenic acids alone as well as due to A.s. Naphthenic acid injections did not result in elevated bile fluorescent metabolites or elevated hepatic EROD activity. In contrast to naphthenic acids exposures, as similar dose of benzo[a]pyrene caused a significant decrease in B- and T-lymphocyte absolute counts in blood and relative B-lymphocyte counts in spleen. Results suggest that the naphthenic acids may act via a generally toxic mechanism rather than by specific toxic effects on immune cells.


Chemosphere | 2013

Test concentration setting for fish in vivo endocrine screening assays

James R. Wheeler; Grace H. Panter; Lennart Weltje; Karen L. Thorpe

Fish in vivo screening methods to detect endocrine active substances, specifically interacting with the hypothalamic-pituitary-gonadal axis, have been developed by both the Organization for Economic Co-operation and Development (OECD) and United States Environmental Protection Agency (US-EPA). In application of these methods, i.e. regulatory testing, this paper provides a proposal on the setting of test concentrations using all available acute and chronic data and also discusses the importance of avoiding the confounding effects of systemic toxicity on endocrine endpoints. This guidance is aimed at reducing the number of false positives and subsequently the number of inappropriate definitive vertebrate studies potentially triggered by effects consequent to systemic, rather than endocrine, toxicity. At the same time it provides a pragmatic approach that maximizes the probability of detecting an effect, if it exists, thus limiting the potential for false negative outcomes.


Environmental Science & Technology | 2017

Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates

Mark E. Hodson; Calum Duffus-Hodson; Andy Clark; Miranda Prendergast-Miller; Karen L. Thorpe

Microplastics are widespread contaminants in terrestrial environments but comparatively little is known about interactions between microplastics and common terrestrial contaminants such as zinc (Zn). In adsorption experiments fragmented HDPE bags c. one mm2 in size showed similar sorption characteristics to soil. However, when present in combination with soil, concentrations of adsorbed Zn on a per mass basis were over an order of magnitude lower on microplastics. Desorption of the Zn was minimal from both microplastics and soil in synthetic soil solution (0.01 M CaCl2), but in synthetic earthworm guts desorption was higher from microplastics (40-60%) than soil (2-15%), suggesting microplastics could increase Zn bioavailability. Individual Lumbricus terrestris earthworms exposed for 28 days in mesocosms of 260 g moist soil containing 0.35 wt % of Zn-bearing microplastic (236-4505 mg kg-1) ingested the microplastics, but there was no evidence of Zn accumulation, mortality, or weight change. Digestion of the earthworms showed that they did not retain microplastics in their gut. These findings indicate that microplastics could act as vectors to increase metal exposure in earthworms, but that the associated risk is unlikely to be significant for essential metals such as Zn that are well regulated by metabolic processes.


Aquatic Toxicology | 2011

Mode of sexual differentiation and its influence on the relative sensitivity of the fathead minnow and zebrafish in the fish sexual development test.

Karen L. Thorpe; Maria L. a Marca Pereira; Heidi Schiffer; Patricia Burkhardt-Holm; Klaus Weber; James R. Wheeler

Exogenous treatment of fish with natural sex hormones and their mimics has been shown to influence gonadal differentiation resulting in biased phenotypic sex-ratios. This has lead to the development of the Fish Sexual Development Test (FSDT) as a method for the detection of endocrine active chemicals. Proposed test organisms include the medaka, zebrafish (ZF) and stickleback, although the guideline also allows for inclusion of species such as the fathead minnow (FHM), provided the test duration allows for sufficient sexual differentiation. However, although the processes underlying sexual differentiation are known to differ for each of these species, it is not known how, or if, these differences would influence the results of the FSDT. In the experiments reported here, responses of the ZF and FHM to prochloraz, a sterol biosynthesis inhibitor and androgen antagonist, were characterized and compared. Exposure to 320 μg/L of prochloraz, from embryo until 60 (ZF) or 95-125 (FHM) days post hatch inhibited somatic growth of both species, but while a negative impact on ZF larval survival was observed (LOEC 32 μg/L) there was no evidence for an effect on FHM larval survival. Prochloraz influenced sexual differentiation in both species by decreasing the proportion of females (LOEC 100 μg/L (ZF), 320 μg/L (FHM)) and delaying completion of sexual differentiation; manifest as an increased incidence of ovotestis in the ZF (LOEC 100 μg/L) and as an increased number of fish with undifferentiated gonads in the FHM (LOEC 320 μg/L). However, while exposure to 320 μg/L prochloraz delayed maturation of the differentiated FHM testis, there was no such effect in the ZF. These results demonstrate that the different strategy of sexual differentiation in the ZF and FHM influences the profile of responses of their gonads to the masculinising effects of prochloraz, but does not affect their overall sensitivity.

Collaboration


Dive into the Karen L. Thorpe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Scholze

Brunel University London

View shared research outputs
Researchain Logo
Decentralizing Knowledge