Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy L. Lane is active.

Publication


Featured researches published by Amy L. Lane.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Desorption electrospray ionization mass spectrometry reveals surface-mediated antifungal chemical defense of a tropical seaweed

Amy L. Lane; Leonard Nyadong; Asiri S. Galhena; Tonya L. Shearer; E. Paige Stout; R. Mitchell Parry; Mark Kwasnik; May D. Wang; Mark E. Hay; Facundo M. Fernández; Julia Kubanek

Organism surfaces represent signaling sites for attraction of allies and defense against enemies. However, our understanding of these signals has been impeded by methodological limitations that have precluded direct fine-scale evaluation of compounds on native surfaces. Here, we asked whether natural products from the red macroalga Callophycus serratus act in surface-mediated defense against pathogenic microbes. Bromophycolides and callophycoic acids from algal extracts inhibited growth of Lindra thalassiae, a marine fungal pathogen, and represent the largest group of algal antifungal chemical defenses reported to date. Desorption electrospray ionization mass spectrometry (DESI-MS) imaging revealed that surface-associated bromophycolides were found exclusively in association with distinct surface patches at concentrations sufficient for fungal inhibition; DESI-MS also indicated the presence of bromophycolides within internal algal tissue. This is among the first examples of natural product imaging on biological surfaces, suggesting the importance of secondary metabolites in localized ecological interactions, and illustrating the potential of DESI-MS in understanding chemically-mediated biological processes.


ChemBioChem | 2013

Bioactivity‐Guided Genome Mining Reveals the Lomaiviticin Biosynthetic Gene Cluster in Salinispora tropica

Roland D. Kersten; Amy L. Lane; Markus Nett; Taylor K. S. Richter; Brendan M. Duggan; Pieter C. Dorrestein; Bradley S. Moore

The use of genome sequences has become routine in guiding the discovery and identification of microbial natural products and their biosynthetic pathways. In silico prediction of molecular features, such as metabolic building blocks, physico‐chemical properties or biological functions, from orphan gene clusters has opened up the characterization of many new chemo‐ and genotypes in genome mining approaches. Here, we guided our genome mining of two predicted enediyne pathways in Salinispora tropica CNB‐440 by a DNA interference bioassay to isolate DNA‐targeting enediyne polyketides. An organic extract of S. tropica showed DNA‐interference activity that surprisingly was not abolished in genetic mutants of the targeted enediyne pathways, ST_pks1 and spo. Instead we showed that the product of the orphan type II polyketide synthase pathway, ST_pks2, is solely responsible for the DNA‐interfering activity of the parent strain. Subsequent comparative metabolic profiling revealed the lomaiviticins, glycosylated diazofluorene polyketides, as the ST_pks2 products. This study marks the first report of the 59 open reading frame lomaiviticin gene cluster (lom) and supports the biochemical logic of their dimeric construction through a pathway related to the kinamycin monomer.


Analytical and Bioanalytical Chemistry | 2009

Reactive desorption electrospray ionization mass spectrometry (DESI-MS) of natural products of a marine alga

Leonard Nyadong; Edward G. Hohenstein; Asiri S. Galhena; Amy L. Lane; Julia Kubanek; C. David Sherrill; Facundo M. Fernández

AbstractPresented here is the optimization and development of a desorption electrospray ionization mass spectrometry (DESI-MS) method for detecting natural products on tissue surfaces. Bromophycolides are algal diterpene-benzoate macrolide natural products that have been shown to inhibit growth of the marine fungal pathogen Lindra thalassiae. As such, they have been implicated in antimicrobial chemical defense. However, the defense mechanisms are not yet completely understood. Precise detection of these compounds on algal tissue surfaces under ambient conditions without any disruptive sample processing could shed more light onto the processes involved in chemical defense of marine organisms. Conventional DESI-MS directly on algal tissue showed relatively low sensitivity for bromophycolide detection. Sensitivity was greatly improved by the addition of various anions including Cl−, Br−, and CF3COO− into the DESI spray solvent. Chloride adduction gave the highest sensitivity for all assayed anions. Density functional optimization of the bromophycolide anionic complexes produced during DESI supported this observation by showing that the chloride complex has the most favorable binding energy. Optimized DESI protocols allowed the direct and unambiguous detection of bromophycolides, including A, B, and E, from the surface of untreated algal tissue. FigureDesorption Electrospray Ionization, a novel technique for mass spectrometric analysis under open air conditions reveals the presence of naturally-occurring antibiotics on the surface of marine algae. Ab-initio calculations and experimental results indicate that sensitiviity could be greatly enhanced by means of dynamic complexation of these antibiotics with various small anions during the dynamic desorption process.


Journal of Organic Chemistry | 2009

Antimalarial Bromophycolides J-Q from the Fijian Red Alga Callophycus serratus

Amy L. Lane; E. Paige Stout; An-Shen Lin; Jacques Prudhomme; Karine G. Le Roch; Craig R. Fairchild; Scott G. Franzblau; Mark E. Hay; William G.L. Aalbersberg; Julia Kubanek

Bromophycolides J-Q (1-8) were isolated from extracts of the Fijian red alga Callophycus serratus and identified with 1D and 2D NMR spectroscopy and mass spectral analyses. These diterpene-benzoate macrolides represent two novel carbon skeletons and add to the 10 previously reported bromophycolides (9-18) from this alga. Among these 18 bromophycolides, several exhibited activities in the low micromolar range against the human malaria parasite Plasmodium falciparum.


Organic Letters | 2009

Antibacterial neurymenolides from the Fijian red alga Neurymenia fraxinifolia.

E. Paige Stout; Adam P. Hasemeyer; Amy L. Lane; Theresa M. Davenport; Sebastian Engel; Mark E. Hay; Craig R. Fairchild; Jacques Prudhomme; Karine G. Le Roch; William G.L. Aalbersberg; Julia Kubanek

Two novel alpha-pyrone macrolides, neurymenolides A (1) and B (2), were isolated from the Fijian red alga Neurymenia fraxinifolia and characterized using a combination of NMR and mass spectral analyses. These molecules represent only the second example of alpha-pyrone macrolides, with 1 existing as interchanging atropisomers due to restricted rotation about the alpha-pyrone ring system. Neurymenolide A (1) displayed moderately potent activities against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VREF).


Journal of Medicinal Chemistry | 2013

Optimization of Peptide Hydroxamate Inhibitors of Insulin-Degrading Enzyme Reveals Marked Substrate-Selectivity

Samer O. Abdul-Hay; Amy L. Lane; Thomas R. Caulfield; Clémence Claussin; Juliette Bertrand; Amandine Masson; Shakeel Choudhry; Abdul H. Fauq; Guhlam M. Maharvi; Malcolm A. Leissring

Insulin-degrading enzyme (IDE) is an atypical zinc-metallopeptidase that degrades insulin and the amyloid ß-protein and is strongly implicated in the pathogenesis of diabetes and Alzheimers disease. We recently developed the first effective inhibitors of IDE, peptide hydroxamates that, while highly potent and selective, are relatively large (MW > 740) and difficult to synthesize. We present here a facile synthetic route that yields enantiomerically pure derivatives comparable in potency to the parent compounds. Through the generation of truncated variants, we identified a compound with significantly reduced size (MW = 455.5) that nonetheless retains good potency (ki = 78 ± 11 nM) and selectivity for IDE. Notably, the potency of these inhibitors was found to vary as much as 60-fold in a substrate-specific manner, an unexpected finding for active site-directed inhibitors. Collectively, our findings demonstrate that potent, small-molecule IDE inhibitors can be developed that, in certain instances, can be highly substrate selective.


Journal of Natural Products | 2008

Structures and absolute configurations of sulfate-conjugated triterpenoids including an antifungal chemical defense of the green macroalga Tydemania expeditionis.

Ren-Wang Jiang; Amy L. Lane; Lauren Mylacraine; Kenneth I. Hardcastle; Craig R. Fairchild; William G.L. Aalbersberg; Mark E. Hay; Julia Kubanek

Cytotoxicity-guided fractionation of the green macroalga Tydemania expeditionis led to isolation of four sulfate-conjugated triterpenoids including one new lanostane-type triterpenoid disulfate, lanosta-8-en-3,29-diol-23-oxo-3,29-disodium sulfate (1), and three known cycloartane-type triterpenoid disulfates, cycloartan-3,29-diol-23-one 3,29-disodium sulfate (2), cycloart-24-en-3,29-diol-23-one 3,29-disodium sulfate (3), and cycloartan-3,23,29-triol 3,29-disodium sulfate (4). Extensive 1D and 2D NMR analyses in combination with X-ray crystallography established the structure and absolute configuration of 1 and allowed determination of the absolute configurations of 2-4 with a revision of previously assigned configuration at C-5. Each natural product was moderately cytotoxic in tumor cell and invertebrate toxicity assays. Of the natural products, only 4 exhibited significant antifungal activity at whole-tissue natural concentrations against the marine pathogen Lindra thalassiae. Comparison of the biological activities of natural products with their desulfated derivatives indicated that sulfation does not appear to confer cytotoxicity or antifungal activity.


Journal of Natural Products | 2014

Characterization of an orphan diterpenoid biosynthetic operon from Salinispora arenicola.

Meimei Xu; Matthew L. Hillwig; Amy L. Lane; Mollie S. Tiernan; Bradley S. Moore; Reuben J. Peters

While more commonly associated with plants than microbes, diterpenoid natural products have been reported to have profound effects in marine microbe–microbe interactions. Intriguingly, the genome of the marine bacterium Salinispora arenicola CNS-205 contains a putative diterpenoid biosynthetic operon, terp1. Here recombinant expression studies are reported, indicating that this three-gene operon leads to the production of isopimara-8,15-dien-19-ol (4). Although 4 is not observed in pure cultures of S. arenicola, it is plausible that the terp1 operon is only expressed under certain physiologically relevant conditions such as in the presence of other marine organisms.


PLOS ONE | 2010

Biochemical warfare on the reef: the role of glutathione transferases in consumer tolerance of dietary prostaglandins.

Kristen E. Whalen; Amy L. Lane; Julia Kubanek; Mark E. Hahn

Background Despite the profound variation among marine consumers in tolerance for allelochemically-rich foods, few studies have examined the biochemical adaptations underlying diet choice. Here we examine the role of glutathione S-transferases (GSTs) in the detoxification of dietary allelochemicals in the digestive gland of the predatory gastropod Cyphoma gibbosum, a generalist consumer of gorgonian corals. Controlled laboratory feeding experiments were used to investigate the influence of gorgonian diet on Cyphoma GST activity and isoform expression. Gorgonian extracts and semi-purified fractions were also screened to identify inhibitors and possible substrates of Cyphoma GSTs. In addition, we investigated the inhibitory properties of prostaglandins (PGs) structurally similar to antipredatory PGs found in high concentrations in the Caribbean gorgonian Plexaura homomalla. Principal Findings Cyphoma GST subunit composition was invariant and activity was constitutively high regardless of gorgonian diet. Bioassay-guided fractionation of gorgonian extracts revealed that moderately hydrophobic fractions from all eight gorgonian species examined contained putative GST substrates/inhibitors. LC-MS and NMR spectral analysis of the most inhibitory fraction from P. homomalla subsequently identified prostaglandin A2 (PGA2) as the dominant component. A similar screening of commercially available prostaglandins in series A, E, and F revealed that those prostaglandins most abundant in gorgonian tissues (e.g., PGA2) were also the most potent inhibitors. In vivo estimates of PGA2 concentration in digestive gland tissues calculated from snail grazing rates revealed that Cyphoma GSTs would be saturated with respect to PGA2 and operating at or near physiological capacity. Significance The high, constitutive activity of Cyphoma GSTs is likely necessitated by the ubiquitous presence of GST substrates and/or inhibitors in this consumers gorgonian diet. This generalists GSTs may operate as ‘all-purpose’ detoxification enzymes, capable of conjugating or sequestering a broad range of lipophilic gorgonian compounds, thereby allowing this predator to exploit a range of chemically-defended prey, resulting in a competitive dietary advantage for this species.


ACS Synthetic Biology | 2016

Two Distinct Cyclodipeptide Synthases from a Marine Actinomycete Catalyze Biosynthesis of the Same Diketopiperazine Natural Product

Elle D. James; Bryan Knuckley; Norah Alqahtani; Suheel K. Porwal; Jisun Ban; Jonathan A. Karty; Rajesh Viswanathan; Amy L. Lane

Diketopiperazine natural products are structurally diverse and offer many biological activities. Cyclodipeptide synthases (CDPSs) were recently unveiled as a novel enzyme family that employs aminoacyl-tRNAs as substrates for 2,5-diketopiperazine assembly. Here, the Nocardiopsis sp. CMB-M0232 genome is predicted to encode two CDPSs, NozA and NcdA. Metabolite profiles from E. coli expressing these genes and assays with purified recombinant enzymes revealed that NozA and NcdA catalyze cyclo(l-Trp-l-Trp) (1) biosynthesis from tryptophanyl-tRNA and do not accept other aromatic aminoacyl-tRNA substrates. Fidelity is uncommon among characterized CDPSs, making NozA and NcdA important CDPS family additions. Further, 1 was previously supported as a biosynthetic precursor of the nocardioazines; the current study suggests that Nocardiopsis sp. may derive this precursor from both NozA and NcdA. This study offers a rare example of a single bacterium encoding multiple phylogenetically distinct enzymes that yield the same secondary metabolite and provides tools for chemoenzymatic syntheses of indole alkaloid diketopiperazines.

Collaboration


Dive into the Amy L. Lane's collaboration.

Top Co-Authors

Avatar

Julia Kubanek

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark E. Hay

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William G.L. Aalbersberg

University of the South Pacific

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Paige Stout

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Elle D. James

University of North Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge