Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy R. Johnson is active.

Publication


Featured researches published by Amy R. Johnson.


Immunological Reviews | 2012

The inflammation highway: metabolism accelerates inflammatory traffic in obesity

Amy R. Johnson; J. Justin Milner; Liza Makowski

As humans evolved, perhaps the two strongest selection determinants of survival were a robust immune response able to clear bacterial, viral, and parasitic infection and an ability to efficiently store nutrients to survive times when food sources were scarce. These traits are not mutually exclusive. It is now apparent that critical proteins necessary for regulating energy metabolism, such as peroxisome proliferator‐activated receptors, Toll‐like receptors, and fatty acid‐binding proteins, also act as links between nutrient metabolism and inflammatory pathway activation in immune cells. Obesity in humans is a symptom of energy imbalance: the scale has been tipped such that energy intake exceeds energy output and may be a result, in part, of evolutionary selection toward a phenotype characterized by efficient energy storage. As discussed in this review, obesity is a state of low‐grade, chronic inflammation that promotes the development of insulin resistance and diabetes. Ironically, the formation of systemic and/or local, tissue‐specific insulin resistance upon inflammatory cell activation may actually be a protective mechanism that co‐evolved to repartition energy sources within the body during times of stress during infection. However, the point has been reached where a once beneficial adaptive trait has become detrimental to the health of the individual and an immense public health and economic burden. This article reviews the complex relationship between obesity, insulin resistance/diabetes, and inflammation, and although the liver, brain, pancreas, muscle, and other tissues are relevant, we focus specifically on how the obese adipose microenvironment can promote immune cell influx and sustain damaging inflammation that can lead to the onset of insulin resistance and diabetes. Finally, we address how substrate metabolism may regulate the immune response and discuss how fuel uptake and metabolism may be a targetable approach to limit or abrogate obesity‐induced inflammation.


Journal of Biological Chemistry | 2014

Metabolic Reprogramming of Macrophages GLUCOSE TRANSPORTER 1 (GLUT1)-MEDIATED GLUCOSE METABOLISM DRIVES A PROINFLAMMATORY PHENOTYPE

Alex J. Freemerman; Amy R. Johnson; Gina N. Sacks; J. Justin Milner; Erin L. Kirk; Melissa A. Troester; Andrew N. Macintyre; Pankuri Goraksha-Hicks; Jeffery Rathmell; Liza Makowski

Background: GLUT1 is the main glucose transporter in certain immune cells. Results: Overexpressing GLUT1 in macrophages results in increased glucose uptake and glucose utilization. Conclusion: Driving glucose uptake and metabolism through GLUT1 induces a proinflammatory response that is dependent upon glycolysis and reactive oxygen species. Significance: Understanding how macrophage substrate metabolism impacts inflammation is crucial to develop novel therapeutics for obesity and diabetes. Glucose is a critical component in the proinflammatory response of macrophages (MΦs). However, the contribution of glucose transporters (GLUTs) and the mechanisms regulating subsequent glucose metabolism in the inflammatory response are not well understood. Because MΦs contribute to obesity-induced inflammation, it is important to understand how substrate metabolism may alter inflammatory function. We report that GLUT1 (SLC2A1) is the primary rate-limiting glucose transporter on proinflammatory-polarized MΦs. Furthermore, in high fat diet-fed rodents, MΦs in crown-like structures and inflammatory loci in adipose and liver, respectively, stain positively for GLUT1. We hypothesized that metabolic reprogramming via increased glucose availability could modulate the MΦ inflammatory response. To increase glucose uptake, we stably overexpressed the GLUT1 transporter in RAW264.7 MΦs (GLUT1-OE MΦs). Cellular bioenergetics analysis, metabolomics, and radiotracer studies demonstrated that GLUT1 overexpression resulted in elevated glucose uptake and metabolism, increased pentose phosphate pathway intermediates, with a complimentary reduction in cellular oxygen consumption rates. Gene expression and proteome profiling analysis revealed that GLUT1-OE MΦs demonstrated a hyperinflammatory state characterized by elevated secretion of inflammatory mediators and that this effect could be blunted by pharmacologic inhibition of glycolysis. Finally, reactive oxygen species production and evidence of oxidative stress were significantly enhanced in GLUT1-OE MΦs; antioxidant treatment blunted the expression of inflammatory mediators such as PAI-1 (plasminogen activator inhibitor 1), suggesting that glucose-mediated oxidative stress was driving the proinflammatory response. Our results indicate that increased utilization of glucose induced a ROS-driven proinflammatory phenotype in MΦs, which may play an integral role in the promotion of obesity-associated insulin resistance.


Cell (Cambridge) | 2000

The complete sequence of a heterochromatic island from a higher eukaryote

W. R. McCombie; M. de la Bastide; K. Habermann; Laurence D. Parnell; Neilay Dedhia; L. Gnoj; K. Schutz; E. Huang; Lori Spiegel; C. Yordan; M. Sehkon; James Augustus Henry Murray; P. Sheet; Matt Cordes; J. Threideh; T. Stoneking; Joelle Kalicki; Tina Graves; G. Harmon; Jennifer B Edwards; Phil Latreille; Laura Courtney; J. Cloud; A. Abbott; K. Scott; D. Johnson; Patrick Minx; David R. Bentley; B. Fulton; N. Miller

Heterochromatin, constitutively condensed chromosomal material, is widespread among eukaryotes but incompletely characterized at the nucleotide level. We have sequenced and analyzed 2.1 megabases (Mb) of Arabidopsis thaliana chromosome 4 that includes 0.5-0.7 Mb of isolated heterochromatin that resembles the chromosomal knobs described by Barbara McClintock in maize. This isolated region has a low density of expressed genes, low levels of recombination and a low incidence of genetrap insertion. Satellite repeats were absent, but tandem arrays of long repeats and many transposons were found. Methylation of these sequences was dependent on chromatin remodeling. Clustered repeats were associated with condensed chromosomal domains elsewhere. The complete sequence of a heterochromatic island provides an opportunity to study sequence determinants of chromosome condensation.


Nucleic Acids Research | 2013

DiffSplice: The genome-wide detection of differential splicing events with RNA-seq

Yin Hu; Yan Huang; Ying Du; Christian F. Orellana; Darshan Singh; Amy R. Johnson; Anaı̈s Monroy; Pei Fen Kuan; Scott M. Hammond; Liza Makowski; Scott H. Randell; Derek Y. Chiang; D. Neil Hayes; Corbin D. Jones; Yufeng Liu; Jan F. Prins; Jinze Liu

The RNA transcriptome varies in response to cellular differentiation as well as environmental factors, and can be characterized by the diversity and abundance of transcript isoforms. Differential transcription analysis, the detection of differences between the transcriptomes of different cells, may improve understanding of cell differentiation and development and enable the identification of biomarkers that classify disease types. The availability of high-throughput short-read RNA sequencing technologies provides in-depth sampling of the transcriptome, making it possible to accurately detect the differences between transcriptomes. In this article, we present a new method for the detection and visualization of differential transcription. Our approach does not depend on transcript or gene annotations. It also circumvents the need for full transcript inference and quantification, which is a challenging problem because of short read lengths, as well as various sampling biases. Instead, our method takes a divide-and-conquer approach to localize the difference between transcriptomes in the form of alternative splicing modules (ASMs), where transcript isoforms diverge. Our approach starts with the identification of ASMs from the splice graph, constructed directly from the exons and introns predicted from RNA-seq read alignments. The abundance of alternative splicing isoforms residing in each ASM is estimated for each sample and is compared across sample groups. A non-parametric statistical test is applied to each ASM to detect significant differential transcription with a controlled false discovery rate. The sensitivity and specificity of the method have been assessed using simulated data sets and compared with other state-of-the-art approaches. Experimental validation using qRT-PCR confirmed a selected set of genes that are differentially expressed in a lung differentiation study and a breast cancer data set, demonstrating the utility of the approach applied on experimental biological data sets. The software of DiffSplice is available at http://www.netlab.uky.edu/p/bioinfo/DiffSplice.


Journal of Carcinogenesis | 2013

Obesity, metabolism and the microenvironment: Links to cancer

Sneha Sundaram; Amy R. Johnson; Liza Makowski

Historically, cancer research has focused on identifying mutations or amplification of genes within the tumor, which informed the development of targeted therapies against affected pathways. This work often considers tumor cells in isolation; however, it is becoming increasingly apparent that the microenvironment surrounding tumor cells strongly influences tumor onset and progression. This is the so-called “seed and soil” hypothesis wherein the seed (cancer cell) is fed and molded by the metabolites, growth factors, modifications of the extracellular matrix or angiogenic factors provided by the soil (or stroma). Currently, 65% of the US population is obese or overweight; similarly staggering figures are reported in US children and globally. Obesity mediates and can exacerbate, both normal and tumor microenvironment dysfunction. Many obesity-associated endocrine, metabolic and inflammatory mediators are suspected to play a role in oncogenesis by modifying systemic nutrient metabolism and the nutrient substrates available locally in the stroma. It is vitally important to understand the biological processes linking obesity and cancer to develop better intervention strategies aimed at curbing the carcinogenic events associated with obesity. In this review, obesity-driven changes in both the normal and tumor microenvironment, alterations in metabolism, and release of signaling molecules such as endocrine, growth, and inflammatory mediators will be highlighted. In addition, we will discuss the effects of the timing of obesity onset or particular “windows of susceptibility,” with a focus on breast cancer etiology.


The FASEB Journal | 2010

Deletion of murine choline dehydrogenase results in diminished sperm motility

Amy R. Johnson; Corneliu N. Craciunescu; Zhong Guo; Ya Wen Teng; Randy Thresher; Jan Krzysztof Blusztajn; Steven H. Zeisel

Choline dehydrogenase (CHDH) catalyzes the conversion of choline to betaine, an important methyl donor and organic osmolyte. We have previously identified single nucleotide polymorphisms (SNPs) in the human CHDH gene that, when present, seem to alter the activity of the CHDH enzyme. These SNPs occur frequently in humans. We created a Chdh(-/-) mouse to determine the functional effects of mutations that result in decreased CHDH activity. Chdh deletion did not affect fetal viability or alter growth or survival of these mice. Only one of eleven Chdh(-/-) males was able to reproduce. Loss of CHDH activity resulted in decreased testicular betaine and increased choline and PCho concentrations. Chdh(+/+) and Chdh(-/-) mice produced comparable amounts of sperm; the impaired fertility was due to diminished sperm motility in the Chdh(-/-) males. Transmission electron microscopy revealed abnormal mitochondrial morphology in Chdh(-/-) sperm. ATP content, total mitochondrial dehydrogenase activity and inner mitochondrial membrane polarization were all significantly reduced in sperm from Chdh(-/-) animals. Mitochondrial changes were also detected in liver, kidney, heart, and testis tissues. We suggest that men who have SNPs in CHDH that decrease the activity of the CHDH enzyme could have decreased sperm motility and fertility.


Breast Cancer Research and Treatment | 2013

Role of HGF in obesity-associated tumorigenesis: C3(1)-TAg mice as a model for human basal-like breast cancer.

Sneha Sundaram; Alex J. Freemerman; Amy R. Johnson; J. Justin Milner; Kirk K. McNaughton; Joseph A. Galanko; Katharine M. Bendt; David B. Darr; Charles M. Perou; Melissa A. Troester; Liza Makowski

Obesity is associated with basal-like breast cancer (BBC), an aggressive breast cancer subtype. The objective of this study was to determine whether obesity promotes BBC onset in adulthood and to evaluate the role of stromal–epithelial interactions in obesity-associated tumorigenesis. We hypothesized that hepatocyte growth factor (HGF) plays a promoting role in BBC, which express the HGF receptor, c-Met. In C3(1)-TAg mice, a murine model of BBC, we demonstrated that obesity leads to a significant increase in HGF secretion and an associated decrease in tumor latency. By immunohistochemical analysis, normal mammary gland exhibited obesity-induced HGF, c-Met and phospho-c-Met, indicating that the activation of the cascade was obesity-driven. HGF secretion was also increased from primary mammary fibroblasts isolated from normal mammary glands and tumors of obese mice compared to lean. These results demonstrate that obesity-induced elevation of HGF expression is a stable phenotype, maintained after several passages, and after removal of dietary stimulation. Conditioned media from primary tumor fibroblasts from obese mice drove tumor cell proliferation. In co-culture, neutralization of secreted HGF blunted tumor cell migration, further linking obesity-mediated HGF-dependent effects to in vitro measures of tumor aggressiveness. In sum, these results demonstrate that HGF/c-Met plays an important role in obesity-associated carcinogenesis. Understanding the effects of obesity on risk and progression is important given that epidemiologic studies imply a portion of BBC could be eliminated by reducing obesity.


PLOS ONE | 2012

Choline dehydrogenase polymorphism rs12676 is a functional variation and is associated with changes in human sperm cell function

Amy R. Johnson; Sai Lao; Tongwen Wang; Joseph A. Galanko; Steven H. Zeisel

Approximately 15% of couples are affected by infertility and up to half of these cases arise from male factor infertility. Unidentified genetic aberrations such as chromosomal deletions, translocations and single nucleotide polymorphisms (SNPs) may be the underlying cause of many cases of idiopathic male infertility. Deletion of the choline dehydrogenase (Chdh) gene in mice results in decreased male fertility due to diminished sperm motility; sperm from Chdh−/− males have decreased ATP concentrations likely stemming from abnormal sperm mitochondrial morphology and function in these cells. Several SNPs have been identified in the human CHDH gene that may result in altered CHDH enzymatic activity. rs12676 (G233T), a non-synonymous SNP located in the CHDH coding region, is associated with increased susceptibility to dietary choline deficiency and risk of breast cancer. We now report evidence that this SNP is also associated with altered sperm motility patterns and dysmorphic mitochondrial structure in sperm. Sperm produced by men who are GT or TT for rs12676 have 40% and 73% lower ATP concentrations, respectively, in their sperm. rs12676 is associated with decreased CHDH protein in sperm and hepatocytes. A second SNP located in the coding region of IL17BR, rs1025689, is linked to altered sperm motility characteristics and changes in choline metabolite concentrations in sperm.


Nucleic Acids Research | 2014

SigFuge: single gene clustering of RNA-seq reveals differential isoform usage among cancer samples

Patrick K. Kimes; Christopher R. Cabanski; Matthew D. Wilkerson; Ni Zhao; Amy R. Johnson; Charles M. Perou; Liza Makowski; Christopher A. Maher; Yufeng Liu; J. S. Marron; D. Neil Hayes

High-throughput sequencing technologies, including RNA-seq, have made it possible to move beyond gene expression analysis to study transcriptional events including alternative splicing and gene fusions. Furthermore, recent studies in cancer have suggested the importance of identifying transcriptionally altered loci as biomarkers for improved prognosis and therapy. While many statistical methods have been proposed for identifying novel transcriptional events with RNA-seq, nearly all rely on contrasting known classes of samples, such as tumor and normal. Few tools exist for the unsupervised discovery of such events without class labels. In this paper, we present SigFuge for identifying genomic loci exhibiting differential transcription patterns across many RNA-seq samples. SigFuge combines clustering with hypothesis testing to identify genes exhibiting alternative splicing, or differences in isoform expression. We apply SigFuge to RNA-seq cohorts of 177 lung and 279 head and neck squamous cell carcinoma samples from the Cancer Genome Atlas, and identify several cases of differential isoform usage including CDKN2A, a tumor suppressor gene known to be inactivated in a majority of lung squamous cell tumors. By not restricting attention to known sample stratifications, SigFuge offers a novel approach to unsupervised screening of genetic loci across RNA-seq cohorts. SigFuge is available as an R package through Bioconductor.


Toxicological Sciences | 2009

Dose response effects of dermally applied diethanolamine on neurogenesis in fetal mouse hippocampus and potential exposure of humans.

Corneliu N. Craciunescu; Mihai D. Niculescu; Zhong Guo; Amy R. Johnson; Leslie M. Fischer; Steven H. Zeisel

Diethanolamine (DEA) is a common ingredient of personal care products. Dermal administration of DEA diminishes hepatic stores of the essential nutrient choline and alters brain development. We previously reported that 80 mg/kg/day of DEA during pregnancy in mice reduced neurogenesis and increased apoptosis in the fetal hippocampus. This study was designed to establish the dose-response relationships for this effect of DEA. Timed-pregnant C57BL/6 mouse dams were dosed dermally from gestation day 7-17 with DEA at 0 (controls), 5, 40, 60, and 80 mg/kg body/day. Fetuses (embryonic day 17 [E17]) from dams treated dermally with 80 mg/kg body/day DEA had decreased neural progenitor cell mitosis at the ventricular surface of the ventricular zone (hippocampus, 54.1 +/- 5.5%; cortex, 58.9 +/- 6.8%; compared to controls; p < 0.01). Also, this dose of DEA to dams increased rates of apoptosis in E17 fetal hippocampus (to 177.2 +/- 21.5% of control; measured using activated caspase-3; p < 0.01). This dose of DEA resulted in accumulation of DEA and its metabolites in liver and in plasma. At doses of DEA less than 80 mg/kg body/day to dams, there were no differences between treated and control groups. In a small group of human subjects, dermal treatment for 1 month with a commercially available skin lotion containing 1.8 mg DEA per gram resulted in detectable plasma concentrations of DEA and dimethyldiethanolamine, but these were far below those concentrations associated with perturbed brain development in the mouse.

Collaboration


Dive into the Amy R. Johnson's collaboration.

Top Co-Authors

Avatar

Liza Makowski

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Steven H. Zeisel

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Alex J. Freemerman

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

D. Neil Hayes

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

J. Justin Milner

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Corneliu N. Craciunescu

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Joseph A. Galanko

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Liyang Zhao

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Matthew D. Wilkerson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Melissa A. Troester

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge