Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy S. Guala is active.

Publication


Featured researches published by Amy S. Guala.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta

Niki L. Reynaert; Albert van der Vliet; Amy S. Guala; Toby McGovern; Milena Hristova; Cristen Pantano; Nicholas H. Heintz; John Heim; Ye-Shih Ho; Dwight E. Matthews; Emiel F.M. Wouters; Yvonne M. W. Janssen-Heininger

The transcription factor NF-κB, a central regulator of immunity, is subject to regulation by redox changes. We now report that cysteine-179 of the inhibitory κB kinase (IKK) β-subunit of the IKK signalosome is a central target for oxidative inactivation by means of S-glutathionylation. S-glutathionylation of IKK-β Cys-179 is reversed by glutaredoxin (GRX), which restores kinase activity. Conversely, GRX1 knockdown sensitizes cells to oxidative inactivation of IKK-β and dampens TNF-α-induced IKK and NF-κB activation. Primary tracheal epithelial cells from Glrx1-deficient mice display reduced NF-κB DNA binding, RelA nuclear translocation, and MIP-2 (macrophage inflammatory protein 2) and keratinocyte-derived chemokine production in response to LPS. Collectively, these findings demonstrate the physiological relevance of the S-glutathionylation–GRX redox module in controlling the magnitude of activation of the NF-κB pathway.


American Journal of Respiratory and Critical Care Medicine | 2008

Nuclear Factor-κB Activation in Airway Epithelium Induces Inflammation and Hyperresponsiveness

Cristen Pantano; Jennifer L. Ather; John F. Alcorn; Matthew E. Poynter; Amy L. Brown; Amy S. Guala; Stacie L. Beuschel; Gilman B. Allen; Laurie A. Whittaker; Mieke Bevelander; Charles G. Irvin; Yvonne M. W. Janssen-Heininger

RATIONALE Nuclear factor (NF)-kappaB is a prominent proinflammatory transcription factor that plays a critical role in allergic airway disease. Previous studies demonstrated that inhibition of NF-kappaB in airway epithelium causes attenuation of allergic inflammation. OBJECTIVES We sought to determine if selective activation of NF-kappaB within the airway epithelium in the absence of other agonists is sufficient to cause allergic airway disease. METHODS A transgenic mouse expressing a doxycycline (Dox)-inducible, constitutively active (CA) version of inhibitor of kappaB (IkappaB) kinase-beta (IKKbeta) under transcriptional control of the rat CC10 promoter, was generated. MEASUREMENTS AND MAIN RESULTS After administration of Dox, expression of the CA-IKKbeta transgene induced the nuclear translocation of RelA in airway epithelium. IKKbeta-triggered activation of NF-kappaB led to an increased content of neutrophils and lymphocytes, and concomitant production of proinflammatory mediators, responses that were not observed in transgenic mice not receiving Dox, or in transgene-negative littermate control animals fed Dox. Unexpectedly, expression of the IKKbeta transgene in airway epithelium was sufficient to cause airway hyperresponsiveness and smooth muscle thickening in absence of an antigen sensitization and challenge regimen, the presence of eosinophils, or the induction of mucus metaplasia. CONCLUSIONS These findings demonstrate that selective activation NF-kappaB in airway epithelium is sufficient to induce airway hyperresponsiveness and smooth muscle thickening, which are both critical features of allergic airway disease.


Journal of Cell Science | 2008

Jun N-terminal kinase 1 regulates epithelial-to-mesenchymal transition induced by TGF-β1

John F. Alcorn; Amy S. Guala; Jos van der Velden; Brian McElhinney; Charles G. Irvin; Roger J. Davis; Yvonne M. W. Janssen-Heininger

Transforming growth factor β1 (TGF-β1) is a cardinal cytokine in the pathogenesis of airway remodeling, and promotes epithelial-to-mesenchymal transition (EMT). As a molecular interaction between TGF-β1 and Jun N-terminal kinase (JNK) has been demonstrated, the goal of this study was to elucidate whether JNK plays a role in TGF-β1-induced EMT. Primary cultures of mouse tracheal epithelial cells (MTEC) from wild-type, JNK1–/– or JNK2–/– mice were comparatively evaluated for their ability to undergo EMT in response to TGF-β1. Wild-type MTEC exposed to TGF-β1 demonstrated a prominent induction of mesenchymal mediators and a loss of epithelial markers, in conjunction with a loss of trans-epithelial resistance (TER). Significantly, TGF-β1-mediated EMT was markedly blunted in epithelial cells lacking JNK1, while JNK2–/– MTEC underwent EMT in response to TGF-β1 in a similar way to wild-type cells. Although Smad2/3 phosphorylation and nuclear localization of Smad4 were similar in JNK1–/– MTEC in response to TGF-β1, Smad DNA-binding activity was diminished. Gene expression profiling demonstrated a global suppression of TGF-β1-modulated genes, including regulators of EMT in JNK1–/– MTEC, in comparison with wild-type cells. In aggregate, these results illuminate the novel role of airway epithelial-dependent JNK1 activation in EMT.


Journal of Cell Biology | 2009

Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas

Vikas Anathy; Scott W. Aesif; Amy S. Guala; Marije Havermans; Niki L. Reynaert; Ye-Shih Ho; Ralph C. Budd; Yvonne M. W. Janssen-Heininger

Reactive oxygen species (ROS) increase ligation of Fas (CD95), a receptor important for regulation of programmed cell death. Glutathionylation of reactive cysteines represents an oxidative modification that can be reversed by glutaredoxins (Grxs). The goal of this study was to determine whether Fas is redox regulated under physiological conditions. In this study, we demonstrate that stimulation with Fas ligand (FasL) induces S-glutathionylation of Fas at cysteine 294 independently of nicotinamide adenine dinucleotide phosphate reduced oxidase–induced ROS. Instead, Fas is S-glutathionylated after caspase-dependent degradation of Grx1, increasing subsequent caspase activation and apoptosis. Conversely, overexpression of Grx1 attenuates S-glutathionylation of Fas and partially protects against FasL-induced apoptosis. Redox-mediated Fas modification promotes its aggregation and recruitment into lipid rafts and enhances binding of FasL. As a result, death-inducing signaling complex formation is also increased, and subsequent activation of caspase-8 and -3 is augmented. These results define a novel redox-based mechanism to propagate Fas-dependent apoptosis.


American Journal of Respiratory Cell and Molecular Biology | 2012

Influenza Induces Endoplasmic Reticulum Stress, Caspase-12–Dependent Apoptosis, and c-Jun N-Terminal Kinase–Mediated Transforming Growth Factor–β Release in Lung Epithelial Cells

Elle C. Roberson; Jane E. Tully; Amy S. Guala; Jessica N. Reiss; Karolyn Godburn; Derek A. Pociask; John F. Alcorn; David W. H. Riches; Oliver Dienz; Yvonne M. W. Janssen-Heininger; Vikas Anathy

Influenza A virus (IAV) infection is known to induce endoplasmic reticulum (ER) stress, Fas-dependent apoptosis, and TGF-β production in a variety of cells. However, the relationship between these events in murine primary tracheal epithelial cells (MTECS), which are considered one of the primary sites of IAV infection and replication, is unclear. We show that IAV infection induced ER stress marker activating transcription factor-6 and endoplasmic reticulum protein 57-kD (ERp57), but not C/EBP homologous protein (CHOP). In contrast, the ER stress inducer thapsigargin (THP) increased CHOP. IAV infection activated caspases and apoptosis, independently of Fas and caspase-8, in MTECs. Instead, apoptosis was mediated by caspase-12. A decrease in ERp57 attenuated the IAV burden and decreased caspase-12 activation and apoptosis in epithelial cells. TGF-β production was enhanced in IAV-infected MTECs, compared with THP or staurosporine. IAV infection caused the activation of c-Jun N-terminal kinase (JNK). Furthermore, IAV-induced TGF-β production required the presence of JNK1, a finding that suggests a role for JNK1 in IAV-induced epithelial injury and subsequent TGF-β production. These novel findings suggest a potential mechanistic role for a distinct ER stress response induced by IAV, and a profibrogenic/repair response in contrast to other pharmacological inducers of ER stress. These responses may also have a potential role in acute lung injury, fibroproliferative acute respiratory distress syndrome, and the recently identified H1N1 influenza-induced exacerbations of chronic obstructive pulmonary disease (Wedzicha JA. Proc Am Thorac Soc 2004;1:115-120) and idiopathic pulmonary fibrosis (Umeda Y, et al. Int Med 2010;49:2333-2336).


Molecular and Cellular Biology | 2004

Reactive Nitrogen Species-Induced Cell Death Requires Fas-Dependent Activation of c-Jun N-Terminal Kinase

Punya Shrivastava; Cristen Pantano; Richard Watkin; Brian McElhinney; Amy S. Guala; Matthew L. Poynter; Rebecca L. Persinger; Ralph C. Budd; Yvonne M. W. Janssen-Heininger

ABSTRACT Nitrogen dioxide is a highly toxic reactive nitrogen species (RNS) recently discovered as an inflammatory oxidant with great potential to damage tissues. We demonstrate here that cell death by RNS was caused by c-Jun N-terminal kinase (JNK). Activation of JNK by RNS was density dependent and caused mitochondrial depolarization and nuclear condensation. JNK activation by RNS was abolished in cells lacking functional Fas or following expression of a truncated version of Fas lacking the intracellular death domain. In contrast, RNS induced JNK potently in cells expressing a truncated version of tumor necrosis factor receptor 1 or cells lacking tumor necrosis factor receptor 1 (TNF-R1), illustrating a dependence of Fas but not TNF-R1 in RNS-induced signaling to JNK. Furthermore, Fas was oxidized, redistributed, and colocalized with Fas-associated death domain (FADD) in RNS-exposed cells, illustrating that RNS directly targeted Fas. JNK activation and cell death by RNS occurred in a Fas ligand- and caspase-independent manner. While the activation of JNK by RNS or FasL required FADD, the cysteine-rich domain 1 containing preligand assembly domain required for FasL signaling was not involved in JNK activation by RNS. These findings illustrate that RNS cause cell death in a Fas- and JNK-dependent manner and that this occurs through a pathway distinct from FasL. Thus, avenues aimed at preventing the interaction of RNS with Fas may attenuate tissue damage characteristic of chronic inflammatory diseases that are accompanied by high levels of RNS.


Antioxidants & Redox Signaling | 2012

Redox-Based Regulation of Apoptosis: S-Glutathionylation As a Regulatory Mechanism to Control Cell Death

Vikas Anathy; Elle C. Roberson; Amy S. Guala; Karolyn Godburn; Ralph C. Budd; Yvonne M. W. Janssen-Heininger

SIGNIFICANCE Redox-based signaling governs a number of important pathways in tissue homeostasis. Consequently, deregulation of redox-controlled processes has been linked to a number of human diseases. Among the biological processes regulated by redox signaling, apoptosis or programmed cell death is a highly conserved process important for tissue homeostasis. Apoptosis can be triggered by a wide variety of stimuli, including death receptor ligands, environmental agents, and cytotoxic drugs. Apoptosis has also been implicated in the etiology of many human diseases. RECENT ADVANCES Recent discoveries demonstrate that redox-based changes are required for efficient activation of apoptosis. Among these redox changes, alterations in the abundant thiol, glutathione (GSH), and the oxidative post-translational modification, protein S-glutathionylation (PSSG) have come to the forefront as critical regulators of apoptosis. CRITICAL ISSUES Although redox-based changes have been documented in apoptosis and disease pathogenesis, the mechanistic details, whereby redox perturbations intersect with pathogenic processes, remain obscure. FUTURE DIRECTIONS Further research will be needed to understand the context in which of the members of the death receptor pathways undergo ligand dependent oxidative modifications. Additional investigation into the interplay between oxidative modifications, redox enzymes, and apoptosis pathway members are also critically needed to improve our understanding how redox-based control is achieved. Such analyses will be important in understanding the diverse chronic diseases. In this review we will discuss the emerging paradigms in our current understanding of redox-based regulation of apoptosis with an emphasis on S-glutathionylation of proteins and the enzymes involved in this important post-translational modification.


American Journal of Respiratory Cell and Molecular Biology | 2011

c-Jun N-Terminal Kinase 1 Promotes Transforming Growth Factor–β1–Induced Epithelial-to-Mesenchymal Transition via Control of Linker Phosphorylation and Transcriptional Activity of Smad3

Jos van der Velden; John F. Alcorn; Amy S. Guala; Elsbeth C. H. L. Badura; Yvonne M. W. Janssen-Heininger

Transforming growth factor (TGF)-β1 is a key mediator of lung remodeling and fibrosis. Epithelial cells are both a source of and can respond to TGF-β1 with epithelial-to-mesenchymal transition (EMT). We recently determined that TGF-β1-induced EMT in lung epithelial cells requires the presence of c-Jun N-terminal kinase (JNK) 1. Because TGF-β1 signals via Smad complexes, the goal of the present study was to determine the impact of JNK1 on phosphorylation of Smad3 and Smad3-dependent transcriptional responses in lung epithelial cells. Evaluation of JNK1-deficient lung epithelial cells demonstrated that TGF-β1-induced terminal phosphorylation of Smad3 was similar, whereas phosphorylation of mitogen-activated protein kinase sites in the linker regions of Smad3 was diminished, in JNK1-deficient cells compared with wild-type cells. In comparison to wild-type Smad3, expression of a mutant Smad3 in which linker mitogen-activated protein kinase sites were ablated caused a marked attenuation in JNK1 or TGF-β1-induced Smad-binding element transcriptional activity, and expression of plasminogen activator inhibitor-1, fibronectin-1, high-mobility group A2, CArG box-binding factor-A, and fibroblast-specific protein-1, genes critical in the process of EMT. JNK1 enhanced the interaction between Smad3 and Smad4, which depended on linker phosphorylation of Smad3. Conversely, Smad3 with phosphomimetic mutations in the linker domain further enhanced EMT-related genes and proteins, even in the absence of JNK1. Finally, we demonstrated a TGF-β1-induced interaction between Smad3 and JNK1. Collectively, these results demonstrate that Smad3 phosphorylation in the linker region and Smad transcriptional activity are directly or indirectly controlled by JNK1, and provide a putative mechanism whereby JNK1 promotes TGF-β1-induced EMT.


American Journal of Respiratory Cell and Molecular Biology | 2011

Ablation of Glutaredoxin-1 Attenuates Lipopolysaccharide-Induced Lung Inflammation and Alveolar Macrophage Activation

Scott W. Aesif; Vikas Anathy; Ine Kuipers; Amy S. Guala; Jessica N. Reiss; Ye-Shih Ho; Yvonne M. W. Janssen-Heininger

Protein S-glutathionylation (PSSG), a reversible posttranslational modification of reactive cysteines, recently emerged as a regulatory mechanism that affects diverse cell-signaling cascades. The extent of cellular PSSG is controlled by the oxidoreductase glutaredoxin-1 (Grx1), a cytosolic enzyme that specifically de-glutathionylates proteins. Here, we sought to evaluate the impact of the genetic ablation of Grx1 on PSSG and on LPS-induced lung inflammation. In response to LPS, Grx1 activity increased in lung tissue and bronchoalveolar lavage (BAL) fluid in WT (WT) mice compared with PBS control mice. Glrx1(-/-) mice consistently showed slight but statistically insignificant decreases in total numbers of inflammatory cells recovered by BAL. However, LPS-induced concentrations of IL-1β, TNF-α, IL-6, and Granulocyte/Monocyte Colony-Stimulating Factor (GM-CSF) in BAL were significantly decreased in Glrx1(-/-) mice compared with WT mice. An in situ assessment of PSSG reactivity and a biochemical evaluation of PSSG content demonstrated increases in the lung tissue of Glrx1(-/-) animals in response to LPS, compared with WT mice or PBS control mice. We also demonstrated that PSSG reactivity was prominent in alveolar macrophages (AMs). Comparative BAL analyses from WT and Glrx1(-/-) mice revealed fewer and smaller AMs in Glrx1(-/-) mice, which showed a significantly decreased expression of NF-κB family members, impaired nuclear translocation of RelA, and lower levels of NF-κB-dependent cytokines after exposure to LPS, compared with WT cells. Taken together, these results indicate that Grx1 regulates the production of inflammatory mediators through control of S-glutathionylation-sensitive signaling pathways such as NF-κB, and that Grx1 expression is critical to the activation of AMs.


Molecular and Cellular Biology | 2012

Oxidative Processing of Latent Fas in the Endoplasmic Reticulum Controls the Strength of Apoptosis

Vikas Anathy; Elle C. Roberson; Brian Cunniff; James D. Nolin; Sidra M. Hoffman; Page C. Spiess; Amy S. Guala; Karolyn G. Lahue; Dylan Goldman; Stevenson Flemer; Albert van der Vliet; Nicholas H. Heintz; Ralph C. Budd; Kenneth D. Tew; Yvonne M. W. Janssen-Heininger

ABSTRACT We recently demonstrated that S-glutathionylation of the death receptor Fas (Fas-SSG) amplifies apoptosis (V. Anathy et al., J. Cell Biol. 184:241–252, 2009). In the present study, we demonstrate that distinct pools of Fas exist in cells. Upon ligation of surface Fas, a separate pool of latent Fas in the endoplasmic reticulum (ER) underwent rapid oxidative processing characterized by the loss of free sulfhydryl content (Fas-SH) and resultant increases in S-glutathionylation of Cys294, leading to increases of surface Fas. Stimulation with FasL rapidly induced associations of Fas with ERp57 and glutathione S-transferase π (GSTP), a protein disulfide isomerase and catalyst of S-glutathionylation, respectively, in the ER. Knockdown or inhibition of ERp57 and GSTP1 substantially decreased FasL-induced oxidative processing and S-glutathionylation of Fas, resulting in decreased death-inducing signaling complex formation and caspase activity and enhanced survival. Bleomycin-induced pulmonary fibrosis was accompanied by increased interactions between Fas-ERp57-GSTP1 and S-glutathionylation of Fas. Importantly, fibrosis was largely prevented following short interfering RNA-mediated ablation of ERp57 and GSTP. Collectively, these findings illuminate a regulatory switch, a ligand-initiated oxidative processing of latent Fas, that controls the strength of apoptosis.

Collaboration


Dive into the Amy S. Guala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niki L. Reynaert

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John F. Alcorn

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge