Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy Vanko is active.

Publication


Featured researches published by Amy Vanko.


Proceedings of the National Academy of Sciences of the United States of America | 2007

[18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor

H. Donald Burns; Koen Van Laere; Sandra M. Sanabria-Bohórquez; Terence G. Hamill; Guy Bormans; Wai-si Eng; Ray E Gibson; Christine Ryan; Brett Connolly; Shil Patel; Stephen Krause; Amy Vanko; Anne Van Hecken; Patrick Dupont; Inge De Lepeleire; Paul Rothenberg; S. Aubrey Stoch; Josee Cote; William K. Hagmann; James P. Jewell; Linus S. Lin; Ping Liu; Mark T. Goulet; Keith M. Gottesdiener; John A. Wagner; Jan de Hoon; Luc Mortelmans; Tung M. Fong; Richard Hargreaves

[18F]MK-9470 is a selective, high-affinity, inverse agonist (human IC50, 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [18F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging studies in rhesus monkeys showed high brain uptake and a distribution pattern generally consistent with that seen in the autoradiographic studies. Uptake was blocked by pretreatment with a potent CB1 inverse agonist, MK-0364. The ratio of total to nonspecific binding in putamen was 4–5:1, indicative of a strong specific signal that was confirmed to be reversible via displacement studies with MK-0364. Baseline PET imaging studies in human research subject demonstrated behavior of [18F]MK-9470 very similar to that seen in monkeys, with very good test–retest variability (7%). Proof of concept studies in healthy young male human subjects showed that MK-0364, given orally, produced a dose-related reduction in [18F]MK-9470 binding reflecting CB1R receptor occupancy by the drug. Thus, [18F]MK-9470 has the potential to be a valuable, noninvasive research tool for the in vivo study of CB1R biology and pharmacology in a variety of neuropsychiatric disorders in humans. In addition, it allows demonstration of target engagement and noninvasive dose-occupancy studies to aid in dose selection for clinical trials of CB1R inverse agonists.


Molecular Imaging and Biology | 2012

Ex Vivo Imaging of Pancreatic Beta Cells using a Radiolabeled GLP-1 Receptor Agonist

Brett Connolly; Amy Vanko; Paul McQuade; Ilonka Guenther; Xiangjun Meng; Daniel Rubins; Rikki Waterhouse; Richard Hargreaves; Cyrille Sur; Eric Hostetler

PurposeThe purpose of this study was to evaluate the binding specificity of the radiolabeled glucagon-like peptide 1 receptor (GLP-1R) agonist (Lys40(DOTA)NH2)Exendin-4 in the pancreas using a combination of ex vivo autoradiography and immunohistochemistry.ProceduresSprague–Dawley rats were administered [64Cu](Lys40(DOTA)NH2)Exendin-4 i.v. with or without unlabeled Exendin (9-39) to determine binding specificity. Similar experiments were performed using Zucker diabetic fatty (ZDF) and Zucker lean (ZLC) rats. Animals were euthanized and the pancreas was extracted, immediately frozen, and sectioned. The sections were apposed to phosphor imaging plates, scanned, and immunostained for insulin.ResultsCo-registration of the autoradiographic and immunohistochemical images revealed that [64Cu] (Lys40(DOTA)NH2)Exendin-4 specific binding was restricted to islet cells. This binding was blocked by the co-administration of Exendin(9-39) indicating that the radiotracer uptake is mediated by GLP-1R. Uptake of [64Cu](Lys40(DOTA)NH2)Exendin-4 was greatly decreased in the pancreas of ZDF rats.ConclusionsEx vivo autoradiography results using [64Cu](Lys40(DOTA)NH2)Exendin-4 suggest that GLP-1R agonists based on Exendin-4 are attractive PET ligands for the in vivo determination of β-cell mass.


Molecular Pharmaceutics | 2013

Comparative Analysis of Folate Derived PET Imaging Agents with [18F]-2-Fluoro-2-deoxy-d-glucose Using a Rodent Inflammatory Paw Model

Sumith A. Kularatne; Marie-Jose Belanger; Xiangjun Meng; Brett Connolly; Amy Vanko; Donna Suresch; Ilonka Guenther; Shubing Wang; Philip S. Low; Paul McQuade; Dinko Gonzalez Trotter

Activated macrophages play a significant role in initiation and progression of inflammatory diseases and may serve as the basis for the development of targeted diagnostic methods for imaging sites of inflammation. Folate receptor beta (FR-β) is differentially expressed on activated macrophages associated with inflammatory disease states yet is absent in either quiescent or resting macrophages. Because folate binds with high affinity to FR-β, development of folate directed imaging agents has proceeded rapidly in the past decade. However, reports of PET based imaging agents for use in inflammatory conditions remain limited. To investigate whether FR-β expressing macrophages could be exploited for PET based inflammatory imaging, two separate folate-targeted PET imaging agents were developed, 4-[(18)F]-fluorophenylfolate and [(68)Ga]-DOTA-folate, and their ability to target activated macrophages were examined in a rodent inflammatory paw model. We further compared inflamed tissue uptake with 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]-FDG). microPET analysis demonstrated that both folate-targeted PET tracers had higher uptake in the inflamed paw compared to the control paw. When these radiotracers were compared to [(18)F]-FDG, both folate PET tracers had a higher signal-to-noise ratio (SNR) than [(18)F]-FDG, suggesting that folate tracers may be superior to [(18)F]-FDG in detecting diseases with an inflammatory component. Moreover, both folate-PET imaging agents also bind to FR-α which is overexpressed on multiple human cancers. Therefore, these folate derived PET tracers may also find use for localizing and staging FR(+) cancers, monitoring response to therapy, and for selecting patients for tandem folate-targeted therapies.


Assay and Drug Development Technologies | 2009

In Vivo Optical Imaging of LacZ Expression Using lacZ Transgenic Mice

Guo-Jun Zhang; Tsing-Bau Chen; Brett Connolly; Shu-An Lin; Richard Hargreaves; Amy Vanko; Bohumil Bednar; Douglas J. MacNeil; Cyrille Sur; David L. Williams

beta-Galactosidase (beta-gal) (encoded by the lacZ gene) has been widely used as a transgene reporter enzyme. The ability to image lacZ expression in living transgenic animals would further extend the use of this reporter. It has been reported that 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one)-beta-d-galactopyranoside (DDAOG), a conjugate of beta-galactose and 7-hydroxy-9H-(1,3-dichloro-9,9-dimethylacridin-2-one), is not only a chromogenic lacZ substrate but that the cleavage product has far-red fluorescence properties detectable by in vivo imaging. In an attempt to noninvasively image lacZ expression in vivo, we applied fluorescence imaging to a G protein-coupled receptor (GPR56), knockout (KO) mouse model, in which the lacZ gene is introduced in the GPR56 locus. Compared to wild-type (WT) mice, GPR56KO/LacZ mice showed three- to fourfold higher fluorescence intensity in the head area 5 min after tail-vein injection of DDAOG. beta-Gal staining in sections of whole brain showed strong lacZ expression in homozygotes, but not in WT mice, consistent with lacZ activity detected by in vivo imaging. The kidneys were also visualized with fluorescence imaging both in vivo and ex vivo, consistent with beta-gal staining findings. Our results demonstrate that fluorescence imaging can be used for in vivo real-time detection of lacZ activity by fluorescence imaging in lacZ transgenic mice. Thus, this technology can potentially be used to noninvasively image changes of certain endogenous molecules and/or molecular pathways in transgenic animals.


Scientific Reports | 2017

A Brain Penetrant Mutant IDH1 Inhibitor Provides In Vivo Survival Benefit

Johnny Kopinja; Raquel Sevilla; Diane Levitan; David Dai; Amy Vanko; Edward Spooner; Chris Ware; Robert Forget; Kun Hu; Astrid M. Kral; Peter Spacciapoli; Richard Kennan; Lata Jayaraman; Vincenzo Pucci; Samanthi Perera; Weisheng Zhang; Christian Fischer; Michael H. Lam

Mutations in IDH1 are highly prevalent in human glioma. First line treatment is radiotherapy, which many patients often forego to avoid treatment-associated morbidities. The high prevalence of IDH1 mutations in glioma highlights the need for brain-penetrant IDH1 mutant-selective inhibitors as an alternative therapeutic option. Here, we have explored the utility of such an inhibitor in IDH1 mutant patient-derived models to assess the potential therapeutic benefits associated with intracranial 2-HG inhibition. Treatment of mutant IDH1 cell line models led to a decrease in intracellular 2-HG levels both in vitro and in vivo. Interestingly, inhibition of 2-HG production had no effect on in vitro IDH1 mutant glioma cell proliferation. In contrast, IDH1 mutant-selective inhibitors provided considerable survival benefit in vivo. However, even with near complete inhibition of intratumoral 2-HG production, not all mutant glioma models responded to treatment. The results suggest that disruption of 2-HG production with brain-penetrant inhibitors in IDH1 mutant gliomas may have substantial patient benefit.


Molecular Imaging and Biology | 2013

Visualization of Mitotic Arrest of Cell Cycle with Bioluminescence Imaging in Living Animals

Guo-Jun Zhang; Tsing-Bau Chen; Joseph P. Davide; Weikang Tao; Amy Vanko; Brett Connolly; David L. Williams; Cyrille Sur

PurposeVisualization of the cell cycle in living subjects has long been a big challenge. The present study aimed to noninvasively visualize mitotic arrest of the cell cycle with an optical reporter in living subjects.ProceduresAn N-terminal cyclin B1–luciferase fusion construct (cyclin B-Luc) controlled by the cyclin B promoter, as a mitosis reporter, was generated. HeLa or HCT116 cells stably expressing cyclin B-Luc reporter were used to evaluate its cell cycle-dependent regulation and ubiquitination-mediated degradation. We also evaluated its feasibility to monitor the mitotic arrest caused by Taxotere both in vitro and in vivo.ResultsWe showed that the cyclin B-Luc fusion protein was regulated in a cell cycle-dependent manner and accumulated in the mitotic phase (M phase) in cellular assays. The regulation of cyclin B-Luc reporter was mediated by proteasome ubiquitination. In the present study, in vitro imaging showed that antimitotic reagents like Taxotere upregulated the reporter through cell cycle arrest in the M phase. Noninvasive longitudinal bioluminescence imaging further demonstrated an upregulation of the reporter consistent with mitotic arrest induced in tumor xenograft models. Induction of this reporter was also observed with a kinesin spindle protein inhibitor, which causes cell cycle blockage in the M phase.ConclusionsOur results demonstrate that the cyclin B-Luc reporter can be used to image whether compounds are capable, in vivo, of causing an M phase arrest and/or altering cyclin B turnover. This reporter can also be potentially used in high-throughput screening efforts aimed at discovering novel molecules that will cause cell cycle arrest at the M phase in cultivated cell lines and animal models.


Proceedings of SPIE | 2014

Automated segmentation of knee and ankle regions of rats from CT images to quantify bone mineral density for monitoring treatments of rheumatoid arthritis

Francisco Cruz; Raquel Sevilla; Joe Zhu; Amy Vanko; Jung Hoon Lee; Belma Dogdas; Weisheng Zhang

Bone mineral density (BMD) obtained from a CT image is an imaging biomarker used pre-clinically for characterizing the Rheumatoid arthritis (RA) phenotype. We use this biomarker in animal studies for evaluating disease progression and for testing various compounds. In the current setting, BMD measurements are obtained manually by selecting the regions of interest from three-dimensional (3-D) CT images of rat legs, which results in a laborious and low-throughput process. Combining image processing techniques, such as intensity thresholding and skeletonization, with mathematical techniques in curve fitting and curvature calculations, we developed an algorithm for quick, consistent, and automatic detection of joints in large CT data sets. The implemented algorithm has reduced analysis time for a study with 200 CT images from 10 days to 3 days and has improved the robust detection of the obtained regions of interest compared with manual segmentation. This algorithm has been used successfully in over 40 studies.


Proceedings of SPIE | 2013

Automated 3D mouse lung segmentation from CT images for extracting quantitative tumor progression biomarkers

Ran Ren; Sangeetha Somayajula; Raquel Sevilla; Amy Vanko; Matthew C. Wiener; Belma Dogdas; Weisheng Zhang

Genetically engineered mouse models of lung cancer are essential for preclinical evaluation of disease progression and treatments as well as in drug development. Micro-computed Tomography (microCT) is an imaging modality that is widely used in visualizing the anatomy of subjects in vivo and extracting quantitative and translatable biomarkers. This work demonstrates the use of uCT imaging and image segmentation techniques in large population phenotyping studies of transgenic mouse models of lung cancer. We studied 8 genotypes of transgenic mice with 99 subjects imaged at 4 time points. We developed (1) a high throughput image acquisition technique that acquires 60 subjects in 3 hours at an isotropic resolution of about 100 um, and (2) an automated segmentation algorithm to compute tumor and vasculature volume (TVV), a previously validated biomarker for lung cancer progression. TVV is computed as the difference between the whole lung and the functional lung (air space within lung) volumes. Previous work on automated lung segmentation focused on healthy lung or on segmentation of pulmonary nodules. We automatically compute TVV by determining a lung region of interest (ROI) by using the rib cage, the functional lung volume by thresholding within the lung ROI, and the whole lung volume by iteratively performing morphological hole-fill, bridge, and image close operations on the functional lung. We compare the automated results with that of manual analysis. Automated functional lung volume results were highly correlated to manual results (R2≥0.95) at all the time points. Whole lung volume was well-correlated to manual measurements (R2≥0.8 up to the 2nd time point), but required some manual correction at later time points when the tumors almost filled the lung. Overall this approach provided about 66% time saving compared to manual analysis. Our innovative workflow with high throughput acquisition and automated segmentation enabled efficient phenotyping studies to aid drug development.


Molecular Imaging and Biology | 2009

PET Imaging Studies in Rhesus Monkey with the Cannabinoid-1 (CB1) Receptor Ligand [11C]CB-119

Terence G. Hamill; Linus S. Lin; William K. Hagmann; Ping Liu; James P. Jewell; Sandra Sanabria; Wai-si Eng; Christine Ryan; Tung M. Fong; Brett Connolly; Amy Vanko; Richard Hargreaves; Mark T. Goulet; H. Donald Burns


Society of Nuclear Medicine Annual Meeting Abstracts | 2008

Evaluation of the efficacy of a gamma secretase inhibitor (GSI1) in a transgenic autochthonous mouse model of mammary cancer using MicroCT and [18F]FDG MicroPET imaging

Elaine M. Jagoda; Christopher T. Winkelmann; Shailendra Patel; Jacqueline Harms; Amy Vanko; Paula Ehrlich; Raymond E. Gibson

Collaboration


Dive into the Amy Vanko's collaboration.

Researchain Logo
Decentralizing Knowledge