Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brett Connolly is active.

Publication


Featured researches published by Brett Connolly.


Nature | 1999

Characterization of the human cysteinyl leukotriene CysLT1 receptor

Kevin R. Lynch; Gary P. O'Neill; Qingyun Liu; D.-S. Im; N. Sawyer; K. M. Metters; Nathalie Coulombe; Mark Abramovitz; David J. Figueroa; Zhizhen Zeng; Brett Connolly; Chang Bai; Christopher P. Austin; A. Chateauneuf; R. Stocco; G. M. Greig; S. Kargman; S. B. Hooks; E. Hosfield; David L. Williams; Anthony W. Ford-Hutchinson; C. T. Caskey; Jilly F. Evans

The cysteinyl leukotrienes—leukotriene C4(LTC4), leukotriene D4(LTD4) and leukotriene E4(LTE 4)—are important mediators of human bronchial asthma,. Pharmacological studies have determined that cysteinyl leukotrienes activate at least two receptors, designated CysLT1 and CysLT2 (refs 4,5,6). The CysLT1-selective antagonists, such as montelukast (Singulair), zafirlukast (Accolate) and pranlukast (Onon), are important in the treatment of asthma. Previous biochemical characterization of CysLT1 antagonists and the CysLT1 receptor has been in membrane preparations from tissues enriched for this receptor. Here we report the molecular and pharmacological characterization of the cloned human CysLT1 receptor. We describe the functional activation (calcium mobilization) of this receptor by LTD4 and LTC4, and competition for radiolabelled LTD4 binding to this receptor by the cysteinyl leukotrienes and three structurally distinct classes of CysLT1-receptor antagonists. We detected CysLT1-receptor messenger RNA in spleen, peripheral blood leukocytes and lung. In normal human lung, expression of the CysLT 1-receptor mRNA was confined to smooth muscle cells and tissue macrophages. Finally, we mapped the human CysLT1-receptor gene to the X chromosome.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A role for the melanocortin 4 receptor in sexual function

Lex H.T. Van der Ploeg; William J. Martin; Andrew D. Howard; Ravi P. Nargund; Christopher P. Austin; Xiao-Ming Guan; Jennifer E. Drisko; Iyassu K. Sebhat; Arthur A. Patchett; David J. Figueroa; Anthony G. DiLella; Brett Connolly; David H. Weinberg; Carina P. Tan; Oksana C. Palyha; Sheng-Shung Pong; Tanya MacNeil; Charles Rosenblum; Aurawan Vongs; Rui Tang; Hong Yu; Andreas Sailer; Tung Ming Fong; Cathy R.-R.C. Huang; Michael R. Tota; Ray Chang; Ralph A. Stearns; Constantin Tamvakopoulos; George J. Christ; Deborah L. Drazen

By using a combination of genetic, pharmacological, and anatomical approaches, we show that the melanocortin 4 receptor (MC4R), implicated in the control of food intake and energy expenditure, also modulates erectile function and sexual behavior. Evidence supporting this notion is based on several findings: (i) a highly selective non-peptide MC4R agonist augments erectile activity initiated by electrical stimulation of the cavernous nerve in wild-type but not Mc4r-null mice; (ii) copulatory behavior is enhanced by administration of a selective MC4R agonist and is diminished in mice lacking Mc4r; (iii) reverse transcription (RT)-PCR and non-PCR based methods demonstrate MC4R expression in rat and human penis, and rat spinal cord, hypothalamus, brainstem, pelvic ganglion (major autonomic relay center to the penis), but not in rat primary corpus smooth muscle cavernosum cells; and (iv) in situ hybridization of glans tissue from the human and rat penis reveal MC4R expression in nerve fibers and mechanoreceptors in the glans of the penis. Collectively, these data implicate the MC4R in the modulation of penile erectile function and provide evidence that MC4R-mediated proerectile responses may be activated through neuronal circuitry in spinal cord erectile centers and somatosensory afferent nerve terminals of the penis. Our results provide a basis for the existence of MC4R-controlled neuronal pathways that control sexual function.


Proceedings of the National Academy of Sciences of the United States of America | 2007

[18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor

H. Donald Burns; Koen Van Laere; Sandra M. Sanabria-Bohórquez; Terence G. Hamill; Guy Bormans; Wai-si Eng; Ray E Gibson; Christine Ryan; Brett Connolly; Shil Patel; Stephen Krause; Amy Vanko; Anne Van Hecken; Patrick Dupont; Inge De Lepeleire; Paul Rothenberg; S. Aubrey Stoch; Josee Cote; William K. Hagmann; James P. Jewell; Linus S. Lin; Ping Liu; Mark T. Goulet; Keith M. Gottesdiener; John A. Wagner; Jan de Hoon; Luc Mortelmans; Tung M. Fong; Richard Hargreaves

[18F]MK-9470 is a selective, high-affinity, inverse agonist (human IC50, 0.7 nM) for the cannabinoid CB1 receptor (CB1R) that has been developed for use in human brain imaging. Autoradiographic studies in rhesus monkey brain showed that [18F]MK-9470 binding is aligned with the reported distribution of CB1 receptors with high specific binding in the cerebral cortex, cerebellum, caudate/putamen, globus pallidus, substantia nigra, and hippocampus. Positron emission tomography (PET) imaging studies in rhesus monkeys showed high brain uptake and a distribution pattern generally consistent with that seen in the autoradiographic studies. Uptake was blocked by pretreatment with a potent CB1 inverse agonist, MK-0364. The ratio of total to nonspecific binding in putamen was 4–5:1, indicative of a strong specific signal that was confirmed to be reversible via displacement studies with MK-0364. Baseline PET imaging studies in human research subject demonstrated behavior of [18F]MK-9470 very similar to that seen in monkeys, with very good test–retest variability (7%). Proof of concept studies in healthy young male human subjects showed that MK-0364, given orally, produced a dose-related reduction in [18F]MK-9470 binding reflecting CB1R receptor occupancy by the drug. Thus, [18F]MK-9470 has the potential to be a valuable, noninvasive research tool for the in vivo study of CB1R biology and pharmacology in a variety of neuropsychiatric disorders in humans. In addition, it allows demonstration of target engagement and noninvasive dose-occupancy studies to aid in dose selection for clinical trials of CB1R inverse agonists.


The Journal of Nuclear Medicine | 2016

Preclinical Characterization of 18F-MK-6240, a Promising PET Tracer for In Vivo Quantification of Human Neurofibrillary Tangles

Eric Hostetler; Abbas M. Walji; Zhizhen Zeng; Patricia Miller; Idriss Bennacef; Cristian Salinas; Brett Connolly; Liza Gantert; Hyking Haley; Marie Holahan; Mona Purcell; Kerry Riffel; Talakad Lohith; Paul J. Coleman; Aileen Soriano; Aimie M. Ogawa; Serena Xu; Xiaoping Zhang; Elizabeth M. Joshi; Joseph Della Rocca; David Hesk; David J. Schenk; Jeffrey L. Evelhoch

A PET tracer is desired to help guide the discovery and development of disease-modifying therapeutics for neurodegenerative diseases characterized by neurofibrillary tangles (NFTs), the predominant tau pathology in Alzheimer disease (AD). We describe the preclinical characterization of the NFT PET tracer 18F-MK-6240. Methods: In vitro binding studies were conducted with 3H-MK-6240 in tissue slices and homogenates from cognitively normal and AD human brain donors to evaluate tracer affinity and selectivity for NFTs. Immunohistochemistry for phosphorylated tau was performed on human brain slices for comparison with 3H-MK-6240 binding patterns on adjacent brain slices. PET studies were performed with 18F-MK-6240 in monkeys to evaluate tracer kinetics and distribution in the brain. 18F-MK-6240 monkey PET studies were conducted after dosing with unlabeled MK-6240 to evaluate tracer binding selectivity in vivo. Results: The 3H-MK-6240 binding pattern was consistent with the distribution of phosphorylated tau in human AD brain slices. 3H-MK-6240 bound with high affinity to human AD brain cortex homogenates containing abundant NFTs but bound poorly to amyloid plaque–rich, NFT-poor AD brain homogenates. 3H-MK-6240 showed no displaceable binding in the subcortical regions of human AD brain slices and in the hippocampus/entorhinal cortex of non-AD human brain homogenates. In monkey PET studies, 18F-MK-6240 displayed rapid and homogeneous distribution in the brain. The 18F-MK-6240 volume of distribution stabilized rapidly, indicating favorable tracer kinetics. No displaceable binding was observed in self-block studies in rhesus monkeys, which do not natively express NFTs. Moderate defluorination was observed as skull uptake. Conclusion: 18F-MK-6240 is a promising PET tracer for the in vivo quantification of NFTs in AD patients.


Molecular Imaging and Biology | 2012

Ex Vivo Imaging of Pancreatic Beta Cells using a Radiolabeled GLP-1 Receptor Agonist

Brett Connolly; Amy Vanko; Paul McQuade; Ilonka Guenther; Xiangjun Meng; Daniel Rubins; Rikki Waterhouse; Richard Hargreaves; Cyrille Sur; Eric Hostetler

PurposeThe purpose of this study was to evaluate the binding specificity of the radiolabeled glucagon-like peptide 1 receptor (GLP-1R) agonist (Lys40(DOTA)NH2)Exendin-4 in the pancreas using a combination of ex vivo autoradiography and immunohistochemistry.ProceduresSprague–Dawley rats were administered [64Cu](Lys40(DOTA)NH2)Exendin-4 i.v. with or without unlabeled Exendin (9-39) to determine binding specificity. Similar experiments were performed using Zucker diabetic fatty (ZDF) and Zucker lean (ZLC) rats. Animals were euthanized and the pancreas was extracted, immediately frozen, and sectioned. The sections were apposed to phosphor imaging plates, scanned, and immunostained for insulin.ResultsCo-registration of the autoradiographic and immunohistochemical images revealed that [64Cu] (Lys40(DOTA)NH2)Exendin-4 specific binding was restricted to islet cells. This binding was blocked by the co-administration of Exendin(9-39) indicating that the radiotracer uptake is mediated by GLP-1R. Uptake of [64Cu](Lys40(DOTA)NH2)Exendin-4 was greatly decreased in the pancreas of ZDF rats.ConclusionsEx vivo autoradiography results using [64Cu](Lys40(DOTA)NH2)Exendin-4 suggest that GLP-1R agonists based on Exendin-4 are attractive PET ligands for the in vivo determination of β-cell mass.


Journal of Medicinal Chemistry | 2016

Discovery of 6-(Fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]-MK-6240): A Positron Emission Tomography (PET) Imaging Agent for Quantification of Neurofibrillary Tangles (NFTs)

Abbas Walji; Eric Hostetler; Harold G. Selnick; Zhizhen Zeng; Patricia Miller; Idriss Bennacef; Cristian Salinas; Brett Connolly; Liza Gantert; Marie A. Holahan; Stacey S. O’Malley; Mona Purcell; Kerry Riffel; Jing Li; Jaume Balsells; Julie A. O'Brien; Stacey Melquist; Aileen Soriano; Xiaoping Zhang; Aimie M. Ogawa; Serena Xu; Elizabeth M. Joshi; Joseph Della Rocca; Fred Hess; Joel B. Schachter; David Hesk; David J. Schenk; Arie Struyk; Kerim Babaoglu; Talakad Lohith

Neurofibrillary tangles (NFTs) made up of aggregated tau protein have been identified as the pathologic hallmark of several neurodegenerative diseases including Alzheimers disease. In vivo detection of NFTs using PET imaging represents a unique opportunity to develop a pharmacodynamic tool to accelerate the discovery of new disease modifying therapeutics targeting tau pathology. Herein, we present the discovery of 6-(fluoro-(18)F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine, 6 ([(18)F]-MK-6240), as a novel PET tracer for detecting NFTs. 6 exhibits high specificity and selectivity for binding to NFTs, with suitable physicochemical properties and in vivo pharmacokinetics.


Neurodegenerative Diseases | 2014

Pyroglutamate-Modified Amyloid-β Protein Demonstrates Similar Properties in an Alzheimer's Disease Familial Mutant Knock-In Mouse and Alzheimer's Disease Brain

Guoxin Wu; Ronald A. Miller; Brett Connolly; Jacob Marcus; John J. Renger; Mary J. Savage

Background: N-terminally truncated, pyroglutamate-modified amyloid-β (Aβ) peptides are major constituents of amyloid deposits in Alzheimers disease (AD). Methods: Using a newly developed ELISA for Aβ modified at glutamate 3 with a pyroglutamate (pE3Aβ), brain pE3Aβ was characterized in human AD in an AD mouse model harboring double knock-in amyloid precursor protein (APP)-KM670/671NL and presenilin 1 (PS1)-P264L (APP/PS1-dKI) mutations, and in a second mouse model with transgenic overexpression of human APP695 with APP-KM670/671NL (Tg2576). Results: pE3Aβ increased in the AD brain versus age-matched controls, with pE3Aβ/total Aβ at 45 and 10%, respectively. Compared to controls, the AD brain demonstrated 8.5-fold increased pE3Aβ compared to non-pE3Aβ species, which increased 2.7-fold. In the APP/PS1-dKI brain, pE3Aβ/total Aβ increased from 7% at 3 months to 16 and 19% at 15 and 19 months, respectively. In Tg2576, pE3Aβ/total Aβ was only 1.5% at 19 months, suggesting that APP/PS1-dKI, despite less total Aβ compared to Tg2576 at comparable ages, more closely mimics AD brain pathology. Conclusion: This report supports a significant role for pE3Aβ in AD pathogenesis by confirming that pE3Aβ represents a large fraction of Aβ within the AD brain. Compared to the age-matched control brain, pE3Aβ increased to a greater extent compared to Aβ species without this N-terminal modification. Further, the APP/PS1-dKI model more closely resembles the AD brain in this regard, compared to the Tg2576 model.


Journal of Histochemistry and Cytochemistry | 2001

Identification of Genes Differentially Expressed in Benign Prostatic Hyperplasia

Anthony G. DiLella; Timothy J. Toner; Christopher P. Austin; Brett Connolly

Differences between benign prostatic hyperplasia (BPH) and normal prostate tissue at the level of mRNA expression provide an opportunity to identify candidate genes for this disease. A cDNA subtraction procedure was used to isolate differentially expressed genes in BPH. The subtraction was done by solution hybridization of BPH cDNA against excess normal prostate cDNA. We identified known, EST, and novel genes by sequence and database analysis of the subtracted cDNAs. Several of these cDNAs were used as probes in Northern blotting analysis to confirm over-expression of their corresponding mRNAs in BPH tissues. One highly upregulated sequence of interest shared identity with a known mRNA encoding human NELL2, a protein containing epidermal growth factor-like domains. NELL2 was not previously reported to be expressed in prostate and may code for a novel prostatic growth factor. In situ hybridization analysis of hyperplastic prostate specimens demonstrated that NELL2 mRNA expression is predominantly localized in basal cells of the epithelium. Disease-related changes in the levels of NELL2 may contribute to alterations in epithelial–stromal homeostasis in BPH. (J Histochem Cytochem 49:669–670, 2001)


Molecular Pharmaceutics | 2013

Comparative Analysis of Folate Derived PET Imaging Agents with [18F]-2-Fluoro-2-deoxy-d-glucose Using a Rodent Inflammatory Paw Model

Sumith A. Kularatne; Marie-Jose Belanger; Xiangjun Meng; Brett Connolly; Amy Vanko; Donna Suresch; Ilonka Guenther; Shubing Wang; Philip S. Low; Paul McQuade; Dinko Gonzalez Trotter

Activated macrophages play a significant role in initiation and progression of inflammatory diseases and may serve as the basis for the development of targeted diagnostic methods for imaging sites of inflammation. Folate receptor beta (FR-β) is differentially expressed on activated macrophages associated with inflammatory disease states yet is absent in either quiescent or resting macrophages. Because folate binds with high affinity to FR-β, development of folate directed imaging agents has proceeded rapidly in the past decade. However, reports of PET based imaging agents for use in inflammatory conditions remain limited. To investigate whether FR-β expressing macrophages could be exploited for PET based inflammatory imaging, two separate folate-targeted PET imaging agents were developed, 4-[(18)F]-fluorophenylfolate and [(68)Ga]-DOTA-folate, and their ability to target activated macrophages were examined in a rodent inflammatory paw model. We further compared inflamed tissue uptake with 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]-FDG). microPET analysis demonstrated that both folate-targeted PET tracers had higher uptake in the inflamed paw compared to the control paw. When these radiotracers were compared to [(18)F]-FDG, both folate PET tracers had a higher signal-to-noise ratio (SNR) than [(18)F]-FDG, suggesting that folate tracers may be superior to [(18)F]-FDG in detecting diseases with an inflammatory component. Moreover, both folate-PET imaging agents also bind to FR-α which is overexpressed on multiple human cancers. Therefore, these folate derived PET tracers may also find use for localizing and staging FR(+) cancers, monitoring response to therapy, and for selecting patients for tandem folate-targeted therapies.


International Journal of Molecular Imaging | 2012

Quantitative Longitudinal Imaging of Vascular Inflammation and Treatment by Ezetimibe in apoE Mice by FMT Using New Optical Imaging Biomarkers of Cathepsin Activity and αvβ3 Integrin

Shuan Lin; Manishkumar Patel; Donna Suresch; Brett Connolly; Bagna Bao; Kevin Groves; Milind Rajopadhye; Jeffrey D. Peterson; Michael Klimas; Cyrille Sur; Bohumil Bednar

Inflammation as a core pathological event of atherosclerotic lesions is associated with the secretion of cathepsin proteases and the expression of α v β 3 integrin. We employed fluorescence molecular tomographic (FMT) noninvasive imaging of these molecular activities using cathepsin sensing (ProSense, CatB FAST) and α v β 3 integrin (IntegriSense) near-infrared fluorescence (NIRF) agents. A statistically significant increase in the ProSense and IntegriSense signal was observed within the chest region of apoE−/− mice (P < 0.05) versus C57BL/6 mice starting 25 and 22 weeks on high cholesterol diet, respectively. In a treatment study using ezetimibe (7 mg/kg), there was a statistically significant reduction in the ProSense and CatB FAST chest signal of treated (P < 0.05) versus untreated apoE−/− mice at 31 and 21 weeks on high cholesterol diet, respectively. The signal of ProSense and CatB FAST correlated with macrophage counts and was found associated with inflammatory cells by fluorescence microscopy and flow cytometry of cells dissociated from aortas. This report demonstrates that cathepsin and α v β 3 integrin NIRF agents can be used as molecular imaging biomarkers for longitudinal detection of atherosclerosis, and cathepsin agents can monitor anti-inflammatory effects of ezetimibe with applications in preclinical testing of therapeutics and potentially for early diagnosis of atherosclerosis in patients.

Collaboration


Dive into the Brett Connolly's collaboration.

Top Co-Authors

Avatar

Richard Hargreaves

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Bohumil Bednar

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge