An Chi Wei
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by An Chi Wei.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Russell S. Whelan; Klitos Konstantinidis; An Chi Wei; Yun Chen; Denis E. Reyna; Saurabh Jha; Ying Yang; John W. Calvert; Tullia Lindsten; Craig B. Thompson; Michael T. Crow; Evripidis Gavathiotis; Gerald W. Dorn; Brian O'Rourke; Richard N. Kitsis
The defining event in apoptosis is mitochondrial outer membrane permeabilization (MOMP), allowing apoptogen release. In contrast, the triggering event in primary necrosis is early opening of the inner membrane mitochondrial permeability transition pore (mPTP), precipitating mitochondrial dysfunction and cessation of ATP synthesis. Bcl-2 proteins Bax and Bak are the principal activators of MOMP and apoptosis. Unexpectedly, we find that deletion of Bax and Bak dramatically reduces necrotic injury during myocardial infarction in vivo. Triple knockout mice lacking Bax/Bak and cyclophilin D, a key regulator of necrosis, fail to show further reduction in infarct size over those deficient in Bax/Bak. Absence of Bax/Bak renders cells resistant to mPTP opening and necrosis, effects confirmed in isolated mitochondria. Reconstitution of these cells or mitochondria with wild-type Bax, or an oligomerization-deficient mutant that cannot support MOMP and apoptosis, restores mPTP opening and necrosis, implicating distinct mechanisms for Bax-regulated necrosis and apoptosis. Both forms of Bax restore mitochondrial fusion in Bax/Bak-null cells, which otherwise exhibit fragmented mitochondria. Cells lacking mitofusin 2 (Mfn2), which exhibit similar fusion defects, are protected to the same extent as Bax/Bak-null cells. Conversely, restoration of fused mitochondria through inhibition of fission potentiates mPTP opening in the absence of Bax/Bak or Mfn2, indicating that the fused state itself is critical. These data demonstrate that Bax-driven fusion lowers the threshold for mPTP opening and necrosis. Thus, Bax and Bak play wider roles in cell death than previously appreciated and may be optimal therapeutic targets for diseases that involve both forms of cell death.
Biochimica et Biophysica Acta | 2009
Miguel A. Aon; Sonia Cortassa; An Chi Wei; Morten Grunnet; Brian O'Rourke
Mitochondrial volume regulation depends on K+ movement across the inner membrane and a mitochondrial Ca2+-dependent K+ channel (mitoK(Ca)) reportedly contributes to mitochondrial K+ uniporter activity. Here we utilize a novel K(Ca) channel activator, NS11021, to examine the role of mitoK(Ca) in regulating mitochondrial function by measuring K+ flux, membrane potential (DeltaPsi(m)), light scattering, and respiration in guinea pig heart mitochondria. K+ uptake and the influence of anions were assessed in mitochondria loaded with the K+ sensor PBFI by adding either the chloride (KCl), acetate (KAc), or phosphate (KH2PO4) salts of K+ to energized mitochondria in a sucrose-based medium. K+ fluxes saturated at approximately 10 mM for each salt, attaining maximal rates of 172+/-17, 54+/-2.4, and 33+/-3.8 nmol K+/min/mg in KCl, KAc, or KH2PO4, respectively. NS11021 (50 nM) increased the maximal K+ uptake rate by 2.5-fold in the presence of KH2PO4 or KAc and increased mitochondrial volume, with little effect on DeltaPsi(m). In KCl, NS11021 increased K+ uptake by only 30% and did not increase volume. The effects of NS11021 on K+ uptake were inhibited by the K(Ca) toxins charybdotoxin (200 nM) or paxilline (1 microM). Fifty nanomolar of NS11021 increased the mitochondrial respiratory control ratio (RCR) in KH2PO4, but not in KCl; however, above 1 microM, NS11021 decreased RCR and depolarized DeltaPsi(m). A control compound lacking K(Ca) activator properties did not increase K+ uptake or volume but had similar nonspecific (toxin-insensitive) effects at high concentrations. The results indicate that activating K+ flux through mitoK(Ca) mediates a beneficial effect on energetics that depends on mitochondrial swelling with maintained DeltaPsi(m).
The Journal of General Physiology | 2012
An Chi Wei; Ting Liu; Raimond L. Winslow; Brian O'Rourke
Mitochondrial Ca2+ uptake is thought to provide an important signal to increase energy production to meet demand but, in excess, can also trigger cell death. The mechanisms defining the relationship between total Ca2+ uptake, changes in mitochondrial matrix free Ca2+, and the activation of the mitochondrial permeability transition pore (PTP) are not well understood. We quantitatively measure changes in [Ca2+]out and [Ca2+]mito during Ca2+ uptake in isolated cardiac mitochondria and identify two components of Ca2+ influx. [Ca2+]mito recordings revealed that the first, MCUmode1, required at least 1 µM Ru360 to be completely inhibited, and responded to small Ca2+ additions in the range of 0.1 to 2 µM with rapid and large changes in [Ca2+]mito. The second component, MCUmode2, was blocked by 100 nM Ru360 and was responsible for the bulk of total Ca2+ uptake for large Ca2+ additions in the range of 2 to 10 µM; however, it had little effect on steady-state [Ca2+]mito. MCUmode1 mediates changes in [Ca2+]mito of 10s of μM, even in the presence of 100 nM Ru360, indicating that there is a finite degree of Ca2+ buffering in the matrix associated with this pathway. In contrast, the much higher Ca2+ loads evoked by MCUmode2 activate a secondary dynamic Ca2+ buffering system consistent with calcium-phosphate complex formation. Increasing Pi potentiated [Ca2+]mito increases via MCUmode1 but suppressed [Ca2+]mito changes via MCUmode2. The results suggest that the role of MCUmode1 might be to modulate oxidative phosphorylation in response to intracellular Ca2+ signaling, whereas MCUmode2 and the dynamic high-capacity Ca2+ buffering system constitute a Ca2+ sink function. Interestingly, the trigger for PTP activation is unlikely to be [Ca2+]mito itself but rather a downstream byproduct of total mitochondrial Ca2+ loading.
Biophysical Journal | 2009
Lufang Zhou; Sonia Cortassa; An Chi Wei; Miguel A. Aon; Raimond L. Winslow; Brian O'Rourke
Ischemia-induced shortening of the cardiac action potential and its heterogeneous recovery upon reperfusion are thought to set the stage for reentrant arrhythmias and sudden cardiac death. We have recently reported that the collapse of mitochondrial membrane potential (DeltaPsi(m)) through a mechanism triggered by reactive oxygen species (ROS), coupled to the opening of sarcolemmal ATP-sensitive potassium (K(ATP)) channels, contributes to electrical dysfunction during ischemia-reperfusion. Here we present a computational model of excitation-contraction coupling linked to mitochondrial bioenergetics that incorporates mitochondrial ROS-induced ROS release with coupling between the mitochondrial energy state and electrical excitability mediated by the sarcolemmal K(ATP) current (I(K,ATP)). Whole-cell model simulations demonstrate that increasing the fraction of oxygen diverted from the respiratory chain to ROS production triggers limit-cycle oscillations of DeltaPsi(m), redox potential, and mitochondrial respiration through the activation of a ROS-sensitive inner membrane anion channel. The periods of transient mitochondrial uncoupling decrease the cytosolic ATP/ADP ratio and activate I(K,ATP), consequently shortening the cellular action potential duration and ultimately suppressing electrical excitability. The model simulates emergent behavior observed in cardiomyocytes subjected to metabolic stress and provides a new tool for examining how alterations in mitochondrial oxidative phosphorylation will impact the electrophysiological, contractile, and Ca(2+) handling properties of the cardiac cell. Moreover, the model is an important step toward building multiscale models that will permit investigation of the role of spatiotemporal heterogeneity of mitochondrial metabolism in the mechanisms of arrhythmogenesis and contractile dysfunction in cardiac muscle.
Biochimica et Biophysica Acta | 2011
An Chi Wei; Ting Liu; Sonia Cortassa; Raimond L. Winslow; Brian O'Rourke
Ca(2+) plays a central role in energy supply and demand matching in cardiomyocytes by transmitting changes in excitation-contraction coupling to mitochondrial oxidative phosphorylation. Matrix Ca(2+) is controlled primarily by the mitochondrial Ca(2+) uniporter and the mitochondrial Na(+)/Ca(2+) exchanger, influencing NADH production through Ca(2+)-sensitive dehydrogenases in the Krebs cycle. In addition to the well-accepted role of the Ca(2+)-triggered mitochondrial permeability transition pore in cell death, it has been proposed that the permeability transition pore might also contribute to physiological mitochondrial Ca(2+) release. Here we selectively measure Ca(2+) influx rate through the mitochondrial Ca(2+) uniporter and Ca(2+) efflux rates through Na(+)-dependent and Na(+)-independent pathways in isolated guinea pig heart mitochondria in the presence or absence of inhibitors of mitochondrial Na(+)/Ca(2+) exchanger (CGP 37157) or the permeability transition pore (cyclosporine A). cyclosporine A suppressed the negative bioenergetic consequences (ΔΨ(m) loss, Ca(2+) release, NADH oxidation, swelling) of high extramitochondrial Ca(2+) additions, allowing mitochondria to tolerate total mitochondrial Ca(2+) loads of >400nmol/mg protein. For Ca(2+) pulses up to 15μM, Na(+)-independent Ca(2+) efflux through the permeability transition pore accounted for ~5% of the total Ca(2+) efflux rate compared to that mediated by the mitochondrial Na(+)/Ca(2+) exchanger (in 5mM Na(+)). Unexpectedly, we also observed that cyclosporine A inhibited mitochondrial Na(+)/Ca(2+) exchanger-mediated Ca(2+) efflux at higher concentrations (IC(50)=2μM) than those required to inhibit the permeability transition pore, with a maximal inhibition of ~40% at 10μM cyclosporine A, while having no effect on the mitochondrial Ca(2+) uniporter. The results suggest a possible alternative mechanism by which cyclosporine A could affect mitochondrial Ca(2+) load in cardiomyocytes, potentially explaining the paradoxical toxic effects of cyclosporine A at high concentrations. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Biophysical Journal | 2011
An Chi Wei; Miguel A. Aon; Brian O'Rourke; Raimond L. Winslow; Sonia Cortassa
We developed a computational model of mitochondrial energetics that includes Ca(2+), proton, Na(+), and phosphate dynamics. The model accounts for distinct respiratory fluxes from substrates of complex I and complex II, pH effects on equilibrium constants and enzyme kinetics, and the acid-base equilibrium distributions of energy intermediaries. We experimentally determined NADH and ΔΨ(m) in guinea pig mitochondria during transitions from de-energized to energized, or during state 2/4 to state 3 respiration, or into hypoxia and uncoupling, and compared the results with those obtained in model simulations. The model quantitatively reproduces the experimentally observed magnitude of ΔΨ(m), the range of NADH levels, respiratory fluxes, and respiratory control ratio upon transitions elicited by sequential additions of substrate and ADP. Simulation results are also able to mimic the change in ΔΨ(m) upon addition of phosphate to state 4 mitochondria, leading to matrix acidification and ΔΨ(m) polarization. The steady-state behavior of the integrated mitochondrial model qualitatively simulates the dependence of respiration on the proton motive force, and the expected flux-force relationships existing between respiratory and ATP synthesis fluxes versus redox and phosphorylation potentials. This upgraded mitochondrial model provides what we believe are new opportunities for simulating mitochondrial physiological behavior during dysfunctional states involving changes in pH and ion dynamics.
Journal of Biological Chemistry | 2015
Junfeng Ma; Ting Liu; An Chi Wei; Partha Banerjee; Brian O'Rourke; Gerald W. Hart
Background: Mitochondrial protein O-GlcNAcylation is not well understood. Results: Eighty eight mitochondrial proteins, involved in diverse pathways, are O-GlcNAcylated, and an overall increased O-GlcNAcylation leads to altered mitochondrial function. Conclusion: O-GlcNAcylation is on many mitochondrial proteins within the oxidative phosphorylation system, modulating cardiac mitochondrial function. Significance: O-GlcNAc cycles on many proteins within mitochondria, leading to altered function. Dynamic cycling of O-linked β-N-acetylglucosamine (O-GlcNAc) on nucleocytoplasmic proteins serves as a nutrient sensor to regulate numerous biological processes. However, mitochondrial protein O-GlcNAcylation and its effects on function are largely unexplored. In this study, we performed a comparative analysis of the proteome and O-GlcNAcome of cardiac mitochondria from rats acutely (12 h) treated without or with thiamet-G (TMG), a potent and specific inhibitor of O-GlcNAcase. We then determined the functional consequences in mitochondria isolated from the two groups. O-GlcNAcomic profiling finds that over 88 mitochondrial proteins are O-GlcNAcylated, with the oxidative phosphorylation system as a major target. Moreover, in comparison with controls, cardiac mitochondria from TMG-treated rats did not exhibit altered protein abundance but showed overall elevated O-GlcNAcylation of many proteins. However, O-GlcNAc was unexpectedly down-regulated at certain sites of specific proteins. Concomitantly, TMG treatment resulted in significantly increased mitochondrial oxygen consumption rates, ATP production rates, and enhanced threshold for permeability transition pore opening by Ca2+. Our data reveal widespread and dynamic mitochondrial protein O-GlcNAcylation, serving as a regulator to their function.
Journal of Biological Chemistry | 2015
An Chi Wei; Ting Liu; Brian O'Rourke
Background: Inorganic phosphate (Pi) buffers matrix Ca2+, but its impact on mitochondrial Ca2+ handling is often overlooked. Results: Mitochondrial Ca2+ uptake and buffering strictly depend on anion transport rates; ATP accelerates Pi-independent Ca2+ uptake. Conclusion: Maximal Ca2+ uniporter rate and Ca2+ buffering are anion transport limited; ATP alters influx without being hydrolyzed. Significance: Pi transport is fundamentally important in controlling mitochondrial Ca2+ signals. The large inner membrane electrochemical driving force and restricted volume of the matrix confer unique constraints on mitochondrial ion transport. Cation uptake along with anion and water movement induces swelling if not compensated by other processes. For mitochondrial Ca2+ uptake, these include activation of countertransporters (Na+/Ca2+ exchanger and Na+/H+ exchanger) coupled to the proton gradient, ultimately maintained by the proton pumps of the respiratory chain, and Ca2+ binding to matrix buffers. Inorganic phosphate (Pi) is known to affect both the Ca2+ uptake rate and the buffering reaction, but the role of anion transport in determining mitochondrial Ca2+ dynamics is poorly understood. Here we simultaneously monitor extra- and intra-mitochondrial Ca2+ and mitochondrial membrane potential (ΔΨm) to examine the effects of anion transport on mitochondrial Ca2+ flux and buffering in Pi-depleted guinea pig cardiac mitochondria. Mitochondrial Ca2+ uptake proceeded slowly in the absence of Pi but matrix free Ca2+ ([Ca2+]mito) still rose to ∼50 μm. Pi (0.001–1 mm) accelerated Ca2+ uptake but decreased [Ca2+]mito by almost 50% while restoring ΔΨm. Pi-dependent effects on Ca2+ were blocked by inhibiting the phosphate carrier. Mitochondrial Ca2+ uptake rate was also increased by vanadate (Vi), acetate, ATP, or a non-hydrolyzable ATP analog (AMP-PNP), with differential effects on matrix Ca2+ buffering and ΔΨm recovery. Interestingly, ATP or AMP-PNP prevented the effects of Pi on Ca2+ uptake. The results show that anion transport imposes an upper limit on mitochondrial Ca2+ uptake and modifies the [Ca2+]mito response in a complex manner.
The FASEB Journal | 2014
Junfeng Ma; Ting Liu; An Chi Wei; Brian O'Rourke; Gerald W. Hart
Biophysical Journal | 2013
An Chi Wei; Ting Liu; Raimond L. Winslow; Brian O'Rourke