Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evripidis Gavathiotis is active.

Publication


Featured researches published by Evripidis Gavathiotis.


Nature | 2008

BAX activation is initiated at a novel interaction site

Evripidis Gavathiotis; Motoshi Suzuki; Marguerite L. Davis; Kenneth Pitter; Gregory H. Bird; Samuel G. Katz; Ho-Chou Tu; Hyungjin Kim; Emily H. Cheng; Nico Tjandra; Loren D. Walensky

BAX is a pro-apoptotic protein of the BCL-2 family that is stationed in the cytosol until activated by a diversity of stress stimuli to induce cell death. Anti-apoptotic proteins such as BCL-2 counteract BAX-mediated cell death. Although an interaction site that confers survival functionality has been defined for anti-apoptotic proteins, an activation site has not been identified for BAX, rendering its explicit trigger mechanism unknown. We previously developed stabilized α-helix of BCL-2 domains (SAHBs) that directly initiate BAX-mediated mitochondrial apoptosis. Here we demonstrate by NMR analysis that BIM SAHB binds BAX at an interaction site that is distinct from the canonical binding groove characterized for anti-apoptotic proteins. The specificity of the human BIM-SAHB–BAX interaction is highlighted by point mutagenesis that disrupts functional activity, confirming that BAX activation is initiated at this novel structural location. Thus, we have now defined a BAX interaction site for direct activation, establishing a new target for therapeutic modulation of apoptosis.


Molecular Cell | 2010

BH3-Triggered Structural Reorganization Drives the Activation of Proapoptotic BAX

Evripidis Gavathiotis; Denis E. Reyna; Marguerite L. Davis; Gregory H. Bird; Loren D. Walensky

BAX is a proapoptotic BCL-2 family member that lies dormant in the cytosol until converted into a killer protein in response to cellular stress. Having recently identified the elusive trigger site for direct BAX activation, we now delineate by NMR and biochemical methods the essential allosteric conformational changes that transform ligand-triggered BAX into a fully activated monomer capable of propagating its own activation. Upon BAX engagement by a triggering BH3 helix, the unstructured loop between α helices 1 and 2 is displaced, the carboxy-terminal helix 9 is mobilized for membrane translocation, and the exposed BAX BH3 domain propagates the death signal through an autoactivating interaction with the trigger site of inactive BAX monomers. Our structure-activity analysis of this seminal apoptotic process reveals pharmacologic opportunities to modulate cell death by interceding at key steps of the BAX activation pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Bax regulates primary necrosis through mitochondrial dynamics

Russell S. Whelan; Klitos Konstantinidis; An Chi Wei; Yun Chen; Denis E. Reyna; Saurabh Jha; Ying Yang; John W. Calvert; Tullia Lindsten; Craig B. Thompson; Michael T. Crow; Evripidis Gavathiotis; Gerald W. Dorn; Brian O'Rourke; Richard N. Kitsis

The defining event in apoptosis is mitochondrial outer membrane permeabilization (MOMP), allowing apoptogen release. In contrast, the triggering event in primary necrosis is early opening of the inner membrane mitochondrial permeability transition pore (mPTP), precipitating mitochondrial dysfunction and cessation of ATP synthesis. Bcl-2 proteins Bax and Bak are the principal activators of MOMP and apoptosis. Unexpectedly, we find that deletion of Bax and Bak dramatically reduces necrotic injury during myocardial infarction in vivo. Triple knockout mice lacking Bax/Bak and cyclophilin D, a key regulator of necrosis, fail to show further reduction in infarct size over those deficient in Bax/Bak. Absence of Bax/Bak renders cells resistant to mPTP opening and necrosis, effects confirmed in isolated mitochondria. Reconstitution of these cells or mitochondria with wild-type Bax, or an oligomerization-deficient mutant that cannot support MOMP and apoptosis, restores mPTP opening and necrosis, implicating distinct mechanisms for Bax-regulated necrosis and apoptosis. Both forms of Bax restore mitochondrial fusion in Bax/Bak-null cells, which otherwise exhibit fragmented mitochondria. Cells lacking mitofusin 2 (Mfn2), which exhibit similar fusion defects, are protected to the same extent as Bax/Bak-null cells. Conversely, restoration of fused mitochondria through inhibition of fission potentiates mPTP opening in the absence of Bax/Bak or Mfn2, indicating that the fused state itself is critical. These data demonstrate that Bax-driven fusion lowers the threshold for mPTP opening and necrosis. Thus, Bax and Bak play wider roles in cell death than previously appreciated and may be optimal therapeutic targets for diseases that involve both forms of cell death.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic

Gregory H. Bird; Navid Madani; Alisa F. Perry; Amy M. Princiotto; Jeffrey G. Supko; Xiaoying He; Evripidis Gavathiotis; Joseph Sodroski; Loren D. Walensky

The pharmacologic utility of lengthy peptides can be hindered by loss of bioactive structure and rapid proteolysis, which limits bioavailability. For example, enfuvirtide (Fuzeon, T20, DP178), a 36-amino acid peptide that inhibits human immunodeficiency virus type 1 (HIV-1) infection by effectively targeting the viral fusion apparatus, has been relegated to a salvage treatment option mostly due to poor in vivo stability and lack of oral bioavailability. To overcome the proteolytic shortcomings of long peptides as therapeutics, we examined the biophysical, biological, and pharmacologic impact of inserting all-hydrocarbon staples into an HIV-1 fusion inhibitor. We find that peptide double-stapling confers striking protease resistance that translates into markedly improved pharmacokinetic properties, including oral absorption. We determined that the hydrocarbon staples create a proteolytic shield by combining reinforcement of overall α-helical structure, which slows the kinetics of proteolysis, with complete blockade of peptide cleavage at constrained sites in the immediate vicinity of the staple. Importantly, double-stapling also optimizes the antiviral activity of HIV-1 fusion peptides and the antiproteolytic feature extends to other therapeutic peptide templates, such as the diabetes drug exenatide (Byetta). Thus, hydrocarbon double-stapling may unlock the therapeutic potential of natural bioactive polypeptides by transforming them into structurally fortified agents with enhanced bioavailability.


Journal of Clinical Investigation | 2012

A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers

James L. LaBelle; Samuel G. Katz; Gregory H. Bird; Evripidis Gavathiotis; Michelle L. Stewart; Jill K. Fisher; Marina Godes; Kenneth Pitter; Andrew L. Kung; Loren D. Walensky

Cancer cells subvert the natural balance between cellular life and death, achieving immortality through pathologic enforcement of survival pathways and blockade of cell death mechanisms. Pro-apoptotic BCL-2 family proteins are frequently disarmed in relapsed and refractory cancer through genetic deletion or interaction-based neutralization by overexpressed antiapoptotic proteins, resulting in resistance to chemotherapy and radiation treatments. New pharmacologic strategies are urgently needed to overcome these formidable apoptotic blockades. We harnessed the natural killing activity of BCL-2-interacting mediator of cell death (BIM), which contains one of the most potent BH3 death domains of the BCL-2 protein family, to restore BH3-dependent cell death in resistant hematologic cancers. A hydrocarbon-stapled peptide modeled after the BIM BH3 helix broadly targeted BCL-2 family proteins with high affinity, blocked inhibitory antiapoptotic interactions, directly triggered proapoptotic activity, and induced dose-responsive and BH3 sequence-specific cell death of hematologic cancer cells. The therapeutic potential of stapled BIM BH3 was highlighted by the selective activation of cell death in the aberrant lymphoid infiltrates of mice reconstituted with BIM-deficient bone marrow and in a human AML xenograft model. Thus, we found that broad and multimodal targeting of the BCL-2 family pathway can overcome pathologic barriers to cell death.


Chemistry & Biology | 2012

A Competitive Stapled Peptide Screen Identifies a Selective Small Molecule that Overcomes MCL-1-Dependent Leukemia Cell Survival

Nicole A. Cohen; Michelle L. Stewart; Evripidis Gavathiotis; Jared L. Tepper; Susanne R. Bruekner; Brian Koss; Joseph T. Opferman; Loren D. Walensky

Cancer cells hijack BCL-2 family survival proteins to suppress the death effectors and thereby enforce an immortal state. This is accomplished biochemically by an antiapoptotic surface groove that neutralizes the proapoptotic BH3 α helix of death proteins. Antiapoptotic MCL-1 in particular has emerged as a ubiquitous resistance factor in cancer. Although targeting the BCL-2 antiapoptotic subclass effectively restores the death pathway in BCL-2-dependent cancer, the development of molecules tailored to the binding specificity of MCL-1 has lagged. We previously discovered that a hydrocarbon-stapled MCL-1 BH3 helix is an exquisitely selective MCL-1 antagonist. By deploying this unique reagent in a competitive screen, we identified an MCL-1 inhibitor molecule that selectively targets the BH3-binding groove of MCL-1, neutralizes its biochemical lock-hold on apoptosis, and induces caspase activation and leukemia cell death in the specific context of MCL-1 dependence.


Nature Cell Biology | 2015

An interconnected hierarchical model of cell death regulation by the BCL-2 family

Hui Chen Chen; Masayuki Kanai; Akane Inoue-Yamauchi; Ho Chou Tu; Yafen Huang; Decheng Ren; Hyungjin Kim; Shugaku Takeda; Denis E. Reyna; Po M. Chan; Yogesh Tengarai Ganesan; Chung Ping Liao; Evripidis Gavathiotis; James J. Hsieh; Emily H. Cheng

Multidomain pro-apoptotic BAX and BAK, once activated, permeabilize mitochondria to trigger apoptosis, whereas anti-apoptotic BCL-2 members preserve mitochondrial integrity. The BH3-only molecules (BH3s) promote apoptosis by either activating BAX–BAK or inactivating anti-apoptotic members. Here, we present biochemical and genetic evidence that NOXA is a bona fide activator BH3. Using combinatorial gain-of-function and loss-of-function approaches in Bid−/−Bim−/−Puma−/−Noxa−/− and Bax−/−Bak−/− cells, we have constructed an interconnected hierarchical model that accommodates and explains how the intricate interplays between the BCL-2 members dictate cellular survival versus death. BID, BIM, PUMA and NOXA directly induce stepwise, bimodal activation of BAX–BAK. BCL-2, BCL-XL and MCL-1 inhibit both modes of BAX–BAK activation by sequestering activator BH3s and ‘BH3-exposed’ monomers of BAX–BAK, respectively. Furthermore, autoactivation of BAX and BAK can occur independently of activator BH3s through downregulation of BCL-2, BCL-XL and MCL-1. Our studies lay a foundation for targeting the BCL-2 family for treating diseases with dysregulated apoptosis.


Nature Chemical Biology | 2013

Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives

Jaime Anguiano; Thomas P. Garner; Murugesan Mahalingam; Bhaskar C. Das; Evripidis Gavathiotis; Ana Maria Cuervo

Chaperone-mediated autophagy (CMA) contributes to cellular quality control and the cellular response to stress through the selective degradation of cytosolic proteins in lysosomes. Decrease in CMA activity occurs in aging and in age-related disorders (for example, neurodegenerative diseases and diabetes). Although prevention of this age-dependent decline through genetic manipulation in mouse has proven beneficial, chemical modulation of CMA is not currently possible, due in part to the lack of information on the signaling mechanisms that modulate this pathway. In this work, we report that signaling through the retinoic acid receptor alpha (RARα) inhibits CMA and apply structure-based chemical design to develop synthetic derivatives of all-trans-retinoic acid (ATRA) to specifically neutralize this inhibitory effect. We demonstrate that chemical enhancement of CMA protects cells from oxidative stress and from proteotoxicity, supporting a potential therapeutic opportunity when reduced CMA contributes to cellular dysfunction and disease.


ACS Chemical Biology | 2014

Distinct BimBH3 (BimSAHB) stapled peptides for structural and cellular studies.

Greg H. Bird; Evripidis Gavathiotis; James L. LaBelle; Samuel G. Katz; Loren D. Walensky

Hydrocarbon stapling is a chemical approach to restoring and fortifying the natural α-helical structure of peptides that otherwise unfold when taken out of context from the host protein. By iterating the peptide sequence, staple type, and sites of insertion, discrete compositions can be generated to suit a diversity of biochemical, structural, proteomic, cellular, and drug development applications. Here, we reinforce key design considerations to avoid pitfalls and maximize progress when applying stapled peptides in chemistry and biology research.


Molecular Cell | 2015

Inhibition of Pro-Apoptotic BAX by a Noncanonical Interaction Mechanism

Lauren A. Barclay; Thomas E. Wales; Thomas P. Garner; Franziska Wachter; Susan Lee; Rachel M. Guerra; Michelle L. Stewart; Craig R. Braun; Gregory H. Bird; Evripidis Gavathiotis; John R. Engen; Loren D. Walensky

BCL-2 is a negative regulator of apoptosis implicated in homeostatic and pathologic cell survival. The canonical anti-apoptotic mechanism involves entrapment of activated BAX by a groove on BCL-2, preventing BAX homo-oligomerization and mitochondrial membrane poration. The BCL-2 BH4 domain also confers anti-apoptotic functionality, but the mechanism is unknown. We find that a synthetic α-helical BH4 domain binds to BAX with nanomolar affinity and independently inhibits the conformational activation of BAX. Hydrogen-deuterium exchange mass spectrometry demonstrated that the N-terminal conformational changes in BAX induced by a triggering BIM BH3 helix were suppressed by the BCL-2 BH4 helix. Structural analyses localized the BH4 interaction site to a groove formed by residues of α1, α1-α2 loop, and α2-α3 and α5-α6 hairpins on the BAX surface. These data reveal a previously unappreciated binding site for targeted inhibition of BAX and suggest that the BCL-2 BH4 domain may participate in apoptosis blockade by a noncanonical interaction mechanism.

Collaboration


Dive into the Evripidis Gavathiotis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denis E. Reyna

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit Verma

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ana Maria Cuervo

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Wu

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Bhaskar C. Das

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge