Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where An M.T. Van Nuffel is active.

Publication


Featured researches published by An M.T. Van Nuffel.


Molecular Therapy | 2008

Enhancing the T-cell Stimulatory Capacity of Human Dendritic Cells by Co-electroporation With CD40L, CD70 and Constitutively Active TLR4 Encoding mRNA

Aude Bonehill; Sandra Tuyaerts; An M.T. Van Nuffel; Carlo Heirman; Tomas Jan Bos; Karel Fostier; Bart Neyns; Kris Thielemans

The effectiveness of the dendritic cell (DC) vaccination protocols that are currently in use could be improved by providing the DCs with a more potent maturation signal. We therefore investigated whether the T-cell stimulatory capacity of human monocyte-derived DCs could be increased by co-electroporation with different combinations of CD40L, CD70, and constitutively active toll-like receptor 4 (caTLR4) encoding mRNA. We show that immature DCs electroporated with CD40L and/or caTLR4 mRNA, but not those electroporated with CD70 mRNA, acquire a mature phenotype along with an enhanced secretion of several cytokines/chemokines. Moreover, these DCs are very potent in inducing naive CD4(+) T cells to differentiate into interferon-gamma (IFN-gamma)-secreting type 1 T helper (Th1) cells. Further, we assessed the capacity of the electroporated DCs to activate naive HLA-A2-restricted MelanA-specific CD8(+) T cells without the addition of any exogenous cytokines. When all three molecules were combined, a >500-fold increase in MelanA-specific CD8(+) T cells was observed when compared with immature DCs, and a >200-fold increase when compared with cytokine cocktail-matured DCs. In correlation, we found a marked increase in cytolytic and IFN-gamma/tumor necrosis factor-alpha (TNF-alpha) secreting CD8(+) T cells. Our data indicate that immature DCs genetically modified to express stimulating molecules can induce tumor antigen-specific T cells in vitro and could prove to be a significant improvement over DCs matured with the methods currently in use.


Clinical Cancer Research | 2009

Single-Step Antigen Loading and Activation of Dendritic Cells by mRNA Electroporation for the Purpose of Therapeutic Vaccination in Melanoma Patients

Aude Bonehill; An M.T. Van Nuffel; Jurgen Corthals; Sandra Tuyaerts; Carlo Heirman; Violaine François; Didier Colau; Pierre van der Bruggen; Bart Neyns; Kris Thielemans

Purpose: A critical factor determining the effectiveness of currently used dendritic cell (DC)–based vaccines is the DC activation or maturation status. We have recently shown that the T-cell stimulatory capacity of DCs pulsed with tumor-antigen–derived peptides can be considerably increased by activating the DCs through electroporation with mRNA encoding CD40 ligand, CD70, and a constitutively active Toll-like receptor 4 (TriMix DCs). Here, we investigate whether TriMix DCs can be coelectroporated with whole tumor-antigen–encoding mRNA. Experimental Design: The T-cell stimulatory capacity of TriMix DCs pulsed with the immunodominant MelanA-A2 peptide and that of TriMix DCs coelectroporated with MelanA mRNA were compared in vitro. TriMix DCs were also coelectroporated with mRNA encoding Mage-A3, Mage-C2, tyrosinase, or gp100. The capacity of these DCs to stimulate tumor-antigen–specific T cells in melanoma patients was investigated both in vitro before vaccination and after DC vaccination. Results: Like peptide-pulsed TriMix DCs, TriMix DCs coelectroporated with MelanA mRNA are very potent in inducing MelanA-specific CD8+ T cells in vitro. These T cells have an activated phenotype, show cytolytic capacity, and produce inflammatory cytokines in response to specific stimulation. TriMix DCs coelectroporated with tyrosinase are able to stimulate tyrosinase-specific CD8+ T cells in vitro from the blood of nonvaccinated melanoma patients. Furthermore, TriMix DCs coelectroporated with Mage-A3, Mage-C2, or tyrosinase are able to induce antigen-specific CD8+ T cells through therapeutic DC vaccination. Conclusions: TriMix DCs coelectroporated with whole tumor-antigen mRNA stimulate antigen-specific T cells in vitro and induce antigen-specific T-cell responses in melanoma patients through vaccination. Therefore, they represent a promising new approach for antitumor immunotherapy.


Journal of Immunotherapy | 2011

Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma.

Sofie Wilgenhof; An M.T. Van Nuffel; Jurgen Corthals; Carlo Heirman; Sandra Tuyaerts; Daphné Benteyn; Arlette De Coninck; Ivan Van Riet; Guy Verfaillie; Judith Vandeloo; Aude Bonehill; Kris Thielemans; Bart Neyns

The immunostimulatory capacity of dendritic cells is improved by co-electroporation with mRNA encoding CD40 ligand, constitutively active toll-like receptor 4, and CD70 (TriMix-DC). This pilot clinical trial evaluated the feasibility, safety, and immunogenicity of a therapeutic vaccination containing autologous TriMix-DC co-electroporated with mRNA encoding a human leukocyte antigen class II-targeting signal linked to 1 of 4 melanoma-associated antigens (MAGE-A3, MAGE-C2, tyrosinase, and gp100) in patients with advanced melanoma. Thirty-five American Joint Committee on Cancer stage III/IV melanoma patients received autologous TriMix-DC (4 administrations 2 weeks apart). Immune monitoring was performed by evaluating skin biopsies of delayed type IV hypersensitivity (DTH) reactions for presence of vaccinal antigen-specific DTH-infiltrating lymphocytes (DIL). Thereafter, patients could receive interferon-alpha-2b (IFN-&agr;-2b) 5 MU subcutaneously 3 times weekly and additional TriMix-DC every 8 weeks. TriMix-DC-related adverse events comprised grade 2 local injection site reactions (all patients), and grade 2 fever and lethargy (2 patients). Vaccinal antigen-specific DIL were found in 0/6 patients tested at vaccine initiation and in 12/21 (57.1%) assessed after the fourth vaccine. A positive postvaccination DTH test correlated with IL-12p70 secretion capacity of TriMix-DC. No objective responses to TriMix-DC alone were seen according to RECIST. Twenty-nine patients received IFN-&agr;-2b after the fourth vaccine without unexpected adverse events. During TriMix-DC/IFN-&agr;-2b combination therapy, 1 partial response and 5 stable disease (disease control of >6 months with regression of metastases) were observed in 17 patients with evaluable disease at baseline. In conclusion, this study demonstrated that therapeutic vaccination with autologous TriMix-DC is feasible, safe, and immunogenic and can be combined with sequential IFN-&agr;-2b.


BioMed Research International | 2013

Characterization of CD8+ T-cell responses in the peripheral blood and skin injection sites of melanoma patients treated with mRNA electroporated autologous dendritic cells (TriMixDC-MEL).

Daphné Benteyn; An M.T. Van Nuffel; Sofie Wilgenhof; Jurgen Corthals; Carlo Heirman; Bart Neyns; Kris Thielemans; Aude Bonehill

Treatment of melanoma patients with mRNA electroporated dendritic cells (TriMixDC-MEL) stimulates T-cell responses against the presented tumor-associated antigens (TAAs). In the current clinical trials, melanoma patients with systemic metastases are treated, requiring priming and/or expansion of preexisting TAA-specific T cells that are able to migrate to both the skin and internal organs. We monitored the presence of TAA-specific CD8+ T cells infiltrating the skin at sites of intradermal TriMixDC-MEL injection (SKILs) and within the circulation of melanoma patients treated in two clinical trials. In 10 out of fourteen (71%) patients screened, CD8+ T cells recognizing any of the four TAA presented by TriMixDC-MEL cellular vaccine were found in both compartments. In total, 30 TAA-specific T-cell responses were detected among the SKILs and 29 among peripheral blood T cells, of which 24 in common. A detailed characterization of the antigen specificity of CD8+ T-cell populations in four patients indicates that the majority of the epitopes detected were only recognized by CD8+ T cells derived from either skin biopsies or peripheral blood, indicating that some compartmentalization occurs after TriMix-DC therapy. To conclude, functional TAA-specific CD8+ T cells distribute both to the skin and peripheral blood of patients after TriMixDC-MEL therapy.


Molecular Therapy | 2012

Dendritic Cells Loaded With mRNA Encoding Full-length Tumor Antigens Prime CD4+ and CD8+ T Cells in Melanoma Patients

An M.T. Van Nuffel; Daphné Benteyn; Sofie Wilgenhof; L. Pierret; Jurgen Corthals; Carlo Heirman; Pierre van der Bruggen; Pierre Coulie; Bart Neyns; Kris Thielemans; Aude Bonehill

It is generally thought that dendritic cells (DCs) loaded with full-length tumor antigen could improve immunotherapy by stimulating broad T-cell responses and by allowing treatment irrespective of the patients human leukocyte antigen (HLA) type. To investigate this, we determined the specificity of T cells from melanoma patients treated with DCs loaded with mRNA encoding a full-length tumor antigen fused to a signal peptide and an HLA class II sorting signal, allowing presentation in HLA class I and II. In delayed-type hypersensitive (DTH)-biopsies and blood, we found functional CD8(+) and CD4(+) T cells recognizing novel treatment-antigen-derived epitopes, presented by several HLA types. Additionally, we identified a CD8(+) response specific for the signal peptide incorporated to elicit presentation by HLA class II and a CD4(+) response specific for the fusion region of the signal peptide and one of the antigens. This demonstrates that the fusion proteins contain newly created immunogenic sequences and provides evidence that ex vivo-generated mRNA-modified DCs can induce effector CD8(+) and CD4(+) T cells from the naive T-cell repertoire of melanoma patients. Thus, this work provides definitive proof that DCs presenting the full antigenic spectrum of tumor antigens can induce T cells specific for novel epitopes and can be administered to patients irrespective of their HLA type.


Journal of Immunology | 2013

Modulation of Regulatory T Cell Function by Monocyte-Derived Dendritic Cells Matured through Electroporation with mRNA Encoding CD40 Ligand, Constitutively Active TLR4, and CD70

Joeri J. Pen; Brenda De Keersmaecker; Sarah K. Maenhout; An M.T. Van Nuffel; Carlo Heirman; Jurgen Corthals; David Escors; Aude Bonehill; Kris Thielemans; Karine Breckpot; Joeri L. Aerts

Regulatory T cells (Tregs) counteract anticancer immune responses through a number of mechanisms, limiting dendritic cell (DC)–based anticancer immunotherapy. In this study, we investigated the influence of various DC activation stimuli on the Treg functionality. We compared DCs activated by electroporation with mRNA encoding constitutively active TLR4 (caTLR4) and CD40 ligand (DiMix-DCs), or these factors together with mRNA encoding the costimulatory molecule CD70 (TriMix-DCs) with DCs maturated in the presence of a mixture of inflammatory cytokines (DCs maturated with a combination of the cytokines IL-1β, IL-6, TNF-α, and PGE2) for their ability to counteract Tregs on different levels. We first demonstrated that there was no difference in the extent of Treg induction starting from CD4+CD25− T cells under the influence of the different DC maturation stimuli. Second, we showed that both DiMix- and TriMix-DCs could partly alleviate Treg inhibition of CD8+ T cells. Third, we observed that CD8+ T cells that had been precultured with DiMix-DCs or TriMix-DCs were partially protected against subsequent Treg suppression. Finally, we showed that Tregs cocultured in the presence of TriMix-DCs, but not DiMix-DCs, partially lost their suppressive capacity. This was accompanied by a decrease in CD27 and CD25 expression on Tregs, as well as an increase in the expression of T-bet and secretion of IFN-γ, TNF-α, and IL-10, suggesting a shift of the Treg phenotype toward a Th1 phenotype. In conclusion, these data suggest that TriMix-DCs are not only able to suppress Treg functions, but moreover could be able to reprogram Tregs to Th1 cells under certain circumstances.


Methods of Molecular Biology | 2010

Immunotherapy of Cancer with Dendritic Cells Loaded with Tumor Antigens and Activated Through mRNA Electroporation

An M.T. Van Nuffel; Jurgen Corthals; Bart Neyns; Carlo Heirman; Kris Thielemans; Aude Bonehill

Since decades, the main goal of tumor immunologists has been to increase the capacity of the immune system to mediate tumor regression. Considerable progress has been made in enhancing the efficacy of therapeutic anticancer vaccines. First, dendritic cells (DCs) have been identified as the key players in orchestrating primary immune responses. A better understanding of their biology and the development of procedures to generate vast amounts of DCs in vitro have accelerated the development of potent immunotherapeutic strategies for cancer. Second, tumor-associated antigens have been identified which are either selectively or preferentially expressed by tumor cells and can be recognized by the immune system. Finally, several studies have been performed on the genetic modification of DCs with tumor antigens. In this regard, loading the DCs with mRNA, which enables them to produce/process and present the tumor antigens themselves, has emerged as a promising strategy. Here, we will first overview the different aspects that must be taken into account when generating an mRNA-based DC vaccine and the published clinical studies exploiting mRNA-loaded DCs. Second, we will give a detailed description of a novel procedure to generate a vaccine consisting of tumor antigen-expressing dendritic cells with an in vitro superior capacity to induce anti-tumor immune responses. Here, immature DCs are electroporated with mRNAs encoding a tumor antigen, CD40 ligand (CD40L), CD70, and constitutively active (caTLR4) to generate mature antigen-presenting DCs.


Journal of Immunological Methods | 2012

Epitope and HLA-type independent monitoring of antigen-specific T-cells after treatment with dendritic cells presenting full-length tumor antigens

An M.T. Van Nuffel; Sandra Tuyaerts; Daphné Benteyn; Sofie Wilgenhof; Jurgen Corthals; Carlo Heirman; Bart Neyns; Kris Thielemans; Aude Bonehill

The efficacy of cancer immunotherapy can be improved by treatment with full-length tumor antigen and by combining several antigens. This approach allows the induction of a broad immune response irrespective of the patients HLA type which at the same time challenges immune monitoring. Also, the number of available lymphocytes is most often limited and minimal in vitro restimulations of the lymphocytes should maintain information about the actual in vivo situation. To overcome these hurdles, we developed a method to measure the CD8(+) and CD4(+) T-cell responses directly ex vivo. Skin biopsies taken from dendritic cell (DC)-induced DTH reactions from melanoma patients participating in a DC-clinical trial served as lymphocyte source. Antigen-specificity of skin infiltrating lymphocytes was investigated by coculture with antigen-presenting autologous B cells and assessed for CD137 upregulation and enhanced cytokine secretion. Using this approach we could detect treatment-specific CD8(+) T-cells without restimulation in vitro. Upregulation of the activation marker CD137 correlated with the upregulation of the lytic marker CD107a. CD137 upregulation by treatment-specific CD4(+) lymphocytes however was more pronounced after antigen-specific in vitro restimulation. Both CD8(+) and CD4(+) lymphocytes could be further expanded using the same B cells as for screening allowing characterization of the recognized antigenic region. In addition, this technique can be extended to detect a broader array of T-cell functions and to monitor a large cohort of patients. We believe that this approach of direct ex vivo monitoring, irrespective of the patients HLA-type or the recognized peptide, and using a limited number of lymphocytes is a valuable tool in the immune monitoring of current cellular immunotherapies.


Methods of Molecular Biology | 2014

Single-step antigen loading and maturation of dendritic cells through mRNA electroporation of a tumor-associated antigen and a TriMix of costimulatory molecules.

Daphné Benteyn; An M.T. Van Nuffel; Sofie Wilgenhof; Aude Bonehill

Dendritic cells (DC) are key players in several types of cancer vaccines. Large numbers of DC can easily be generated in closed systems from the monocyte fraction of the peripheral blood. They are the professional antigen-presenting cells, and electroporation of mRNA-encoding tumor antigens is a very efficient and a relatively simple way to load the DC with antigen. The co-electroporation of a tumor antigen of choice and the combination of 3 costimulatory molecules, including CD70, caTLR4, and CD40L (TriMix-DC), leads to fully potent antigen-presenting DC able to generate a broad immune response.Here we describe the in vitro transcription of the mRNA and the subsequent generation and electroporation of autologous DC used for the treatment of melanoma patients.


OncoImmunology | 2012

Overcoming HLA restriction in clinical trials: Immune monitoring of mRNA-loaded DC therapy.

An M.T. Van Nuffel; Sofie Wilgenhof; Kris Thielemans; Aude Bonehill

A decade of collective work by tumor immunologists has led to improved large scale generation, maturation, antigen loading and administration of dendritic cells (DCs) to cancer patients, promoting enhanced antitumor activity. We alleviated the HLA-restriction in DC therapy and demonstrated that it is meaningful to treat patients with DCs irrespective of their HLA type.

Collaboration


Dive into the An M.T. Van Nuffel's collaboration.

Top Co-Authors

Avatar

Aude Bonehill

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Kris Thielemans

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Carlo Heirman

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Bart Neyns

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Jurgen Corthals

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Daphné Benteyn

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Sofie Wilgenhof

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Sandra Tuyaerts

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Ivan Van Riet

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Karine Breckpot

Vrije Universiteit Brussel

View shared research outputs
Researchain Logo
Decentralizing Knowledge