Daphné Benteyn
Vrije Universiteit Brussel
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daphné Benteyn.
Cancer Research | 2012
Sandra Van Lint; Cleo Goyvaerts; Sarah K. Maenhout; Lode Goethals; Aurélie Disy; Daphné Benteyn; Joeri Pen; Aude Bonehill; Carlo Heirman; Karine Breckpot; Kris Thielemans
The use of tumor-associated antigen (TAA) mRNA for therapeutic purposes is under active investigation. To be effective, mRNA vaccines need to deliver activation stimuli in addition to TAAs to dendritic cells (DC). In this study, we evaluated whether intranodal delivery of TAA mRNA together with TriMix, a mix of mRNA encoding CD40 ligand, constitutive active Toll-like receptor 4 and CD70, results in the in situ modification and maturation of DCs, hence, priming of TAA-specific T cells. We showed selective uptake and translation of mRNA in vivo by lymph node resident CD11c(+) cells. This process was hampered by codelivery of classical maturation stimuli but not by TriMix mRNA. Importantly, TriMix mRNA induced a T-cell-attracting and stimulatory environment, including recruitment of antigen-specific CD4(+) and CD8(+) T cells and CTLs against various TAAs. In several mouse tumor models, mRNA vaccination was as efficient in CTL induction and therapy response as vaccination with mRNA-electroporated DCs. Together, our findings suggest that intranodal administration of TAA mRNA together with mRNA encoding immunomodulating molecules is a promising vaccination strategy.
Journal of Immunotherapy | 2011
Sofie Wilgenhof; An M.T. Van Nuffel; Jurgen Corthals; Carlo Heirman; Sandra Tuyaerts; Daphné Benteyn; Arlette De Coninck; Ivan Van Riet; Guy Verfaillie; Judith Vandeloo; Aude Bonehill; Kris Thielemans; Bart Neyns
The immunostimulatory capacity of dendritic cells is improved by co-electroporation with mRNA encoding CD40 ligand, constitutively active toll-like receptor 4, and CD70 (TriMix-DC). This pilot clinical trial evaluated the feasibility, safety, and immunogenicity of a therapeutic vaccination containing autologous TriMix-DC co-electroporated with mRNA encoding a human leukocyte antigen class II-targeting signal linked to 1 of 4 melanoma-associated antigens (MAGE-A3, MAGE-C2, tyrosinase, and gp100) in patients with advanced melanoma. Thirty-five American Joint Committee on Cancer stage III/IV melanoma patients received autologous TriMix-DC (4 administrations 2 weeks apart). Immune monitoring was performed by evaluating skin biopsies of delayed type IV hypersensitivity (DTH) reactions for presence of vaccinal antigen-specific DTH-infiltrating lymphocytes (DIL). Thereafter, patients could receive interferon-alpha-2b (IFN-&agr;-2b) 5 MU subcutaneously 3 times weekly and additional TriMix-DC every 8 weeks. TriMix-DC-related adverse events comprised grade 2 local injection site reactions (all patients), and grade 2 fever and lethargy (2 patients). Vaccinal antigen-specific DIL were found in 0/6 patients tested at vaccine initiation and in 12/21 (57.1%) assessed after the fourth vaccine. A positive postvaccination DTH test correlated with IL-12p70 secretion capacity of TriMix-DC. No objective responses to TriMix-DC alone were seen according to RECIST. Twenty-nine patients received IFN-&agr;-2b after the fourth vaccine without unexpected adverse events. During TriMix-DC/IFN-&agr;-2b combination therapy, 1 partial response and 5 stable disease (disease control of >6 months with regression of metastases) were observed in 17 patients with evaluable disease at baseline. In conclusion, this study demonstrated that therapeutic vaccination with autologous TriMix-DC is feasible, safe, and immunogenic and can be combined with sequential IFN-&agr;-2b.
BioMed Research International | 2013
Daphné Benteyn; An M.T. Van Nuffel; Sofie Wilgenhof; Jurgen Corthals; Carlo Heirman; Bart Neyns; Kris Thielemans; Aude Bonehill
Treatment of melanoma patients with mRNA electroporated dendritic cells (TriMixDC-MEL) stimulates T-cell responses against the presented tumor-associated antigens (TAAs). In the current clinical trials, melanoma patients with systemic metastases are treated, requiring priming and/or expansion of preexisting TAA-specific T cells that are able to migrate to both the skin and internal organs. We monitored the presence of TAA-specific CD8+ T cells infiltrating the skin at sites of intradermal TriMixDC-MEL injection (SKILs) and within the circulation of melanoma patients treated in two clinical trials. In 10 out of fourteen (71%) patients screened, CD8+ T cells recognizing any of the four TAA presented by TriMixDC-MEL cellular vaccine were found in both compartments. In total, 30 TAA-specific T-cell responses were detected among the SKILs and 29 among peripheral blood T cells, of which 24 in common. A detailed characterization of the antigen specificity of CD8+ T-cell populations in four patients indicates that the majority of the epitopes detected were only recognized by CD8+ T cells derived from either skin biopsies or peripheral blood, indicating that some compartmentalization occurs after TriMix-DC therapy. To conclude, functional TAA-specific CD8+ T cells distribute both to the skin and peripheral blood of patients after TriMixDC-MEL therapy.
Annals of Oncology | 2013
Sofie Wilgenhof; A. M. T. Van Nuffel; Daphné Benteyn; Jurgen Corthals; Cindy Aerts; Carlo Heirman; I. Van Riet; Aude Bonehill; Kris Thielemans; Bart Neyns
BACKGROUND Autologous monocyte-derived dendritic cells (DCs) electroporated with synthetic messenger RNA (mRNA) encoding a CD40 ligand, a constitutively active Toll-like receptor 4 and CD70, together with mRNA encoding fusion proteins of a human leukocyte antigen (HLA)-class II targeting signal (DC-LAMP) and a melanoma-associated antigen (MAA); either MAGE-A3, MAGE-C2, tyrosinase or gp100) (TriMixDC-MEL) are superiorly immunogenic. PATIENTS AND METHODS In this phase IB clinical trial, 24 million viable DCs were administered by four biweekly combined intradermal (id) and intravenous (iv) administrations, and a fifth administration on week 16. The number of iv-administered DCs was escalated in four sequentially treated cohorts. Immune responses were assessed by analysis of antigen specificity of blood-derived T-cells and skin infiltrating lymphocytes (SKILs). RESULTS Fifteen patients with pretreated advanced melanoma tolerated administration of TriMixDC-MEL well. Two patients achieved a complete response and two patients a partial response. All objective responders are progression-free after a follow-up of, respectively, 24+, 28+, 33+, and 34+ months. Post-therapy antigen-specific SKILs were documented in 6 of 12 patients, and antigen-specific CD8(+) T-cells were detected in the blood of 4 of 5 patients. CONCLUSIONS Cellular immunotherapy with TriMixDC-MEL is safe and immunogenic. Antitumor activity with durable disease control is observed across the investigated iv-dose levels. CLINICALTRIALSGOV IDENTIFIER NCT01066390.
Molecular Therapy | 2012
An M.T. Van Nuffel; Daphné Benteyn; Sofie Wilgenhof; L. Pierret; Jurgen Corthals; Carlo Heirman; Pierre van der Bruggen; Pierre Coulie; Bart Neyns; Kris Thielemans; Aude Bonehill
It is generally thought that dendritic cells (DCs) loaded with full-length tumor antigen could improve immunotherapy by stimulating broad T-cell responses and by allowing treatment irrespective of the patients human leukocyte antigen (HLA) type. To investigate this, we determined the specificity of T cells from melanoma patients treated with DCs loaded with mRNA encoding a full-length tumor antigen fused to a signal peptide and an HLA class II sorting signal, allowing presentation in HLA class I and II. In delayed-type hypersensitive (DTH)-biopsies and blood, we found functional CD8(+) and CD4(+) T cells recognizing novel treatment-antigen-derived epitopes, presented by several HLA types. Additionally, we identified a CD8(+) response specific for the signal peptide incorporated to elicit presentation by HLA class II and a CD4(+) response specific for the fusion region of the signal peptide and one of the antigens. This demonstrates that the fusion proteins contain newly created immunogenic sequences and provides evidence that ex vivo-generated mRNA-modified DCs can induce effector CD8(+) and CD4(+) T cells from the naive T-cell repertoire of melanoma patients. Thus, this work provides definitive proof that DCs presenting the full antigenic spectrum of tumor antigens can induce T cells specific for novel epitopes and can be administered to patients irrespective of their HLA type.
Expert Review of Vaccines | 2015
Daphné Benteyn; Carlo Heirman; Aude Bonehill; Kris Thielemans; Karine Breckpot
Cancer immunotherapy has been proposed as a powerful treatment modality. Active immunotherapy aspires to stimulate the patient’s immune system, particularly T cells. These cells can recognize and kill cancer cells and can form an immunological memory. Dendritic cells (DCs) are the professional antigen-presenting cells of our immune system. They take up and process antigens to present them to T cells. Consequently, DCs have been investigated as a means to stimulate cancer-specific T-cell responses. An efficient strategy to program DCs is the use of mRNA, a well-defined and safe molecule that can be easily generated at high purity. Importantly, vaccines consisting of mRNA-modified DCs showed promising results in clinical trials. Therefore, we will introduce cancer immunotherapy and DCs and give a detailed overview on the application of mRNA to generate cancer-fighting DC vaccines.
Journal of Immunological Methods | 2012
An M.T. Van Nuffel; Sandra Tuyaerts; Daphné Benteyn; Sofie Wilgenhof; Jurgen Corthals; Carlo Heirman; Bart Neyns; Kris Thielemans; Aude Bonehill
The efficacy of cancer immunotherapy can be improved by treatment with full-length tumor antigen and by combining several antigens. This approach allows the induction of a broad immune response irrespective of the patients HLA type which at the same time challenges immune monitoring. Also, the number of available lymphocytes is most often limited and minimal in vitro restimulations of the lymphocytes should maintain information about the actual in vivo situation. To overcome these hurdles, we developed a method to measure the CD8(+) and CD4(+) T-cell responses directly ex vivo. Skin biopsies taken from dendritic cell (DC)-induced DTH reactions from melanoma patients participating in a DC-clinical trial served as lymphocyte source. Antigen-specificity of skin infiltrating lymphocytes was investigated by coculture with antigen-presenting autologous B cells and assessed for CD137 upregulation and enhanced cytokine secretion. Using this approach we could detect treatment-specific CD8(+) T-cells without restimulation in vitro. Upregulation of the activation marker CD137 correlated with the upregulation of the lytic marker CD107a. CD137 upregulation by treatment-specific CD4(+) lymphocytes however was more pronounced after antigen-specific in vitro restimulation. Both CD8(+) and CD4(+) lymphocytes could be further expanded using the same B cells as for screening allowing characterization of the recognized antigenic region. In addition, this technique can be extended to detect a broader array of T-cell functions and to monitor a large cohort of patients. We believe that this approach of direct ex vivo monitoring, irrespective of the patients HLA-type or the recognized peptide, and using a limited number of lymphocytes is a valuable tool in the immune monitoring of current cellular immunotherapies.
Cancer immunology research | 2016
Sandra Van Lint; Dries Renmans; Katleen Broos; Lode Goethals; Sarah K. Maenhout; Daphné Benteyn; Cleo Goyvaerts; Stephanie Du Four; Kevin Van der Jeught; Lukasz Bialkowski; Véronique Flamand; Carlo Heirman; Kris Thielemans; Karine Breckpot
Intratumoral injection of CTL-stimulatory agents could provide another avenue for immunotherapy. TriMix mRNA, comprising three DC-oriented stimulatory mRNAs, was examined in mouse models and provides a rationale for clinical testing in solid and accessible tumors. Modulating the activity of tumor-infiltrating dendritic cells (TiDC) provides opportunities for novel cancer interventions. In this article, we report on our study of the uptake of mRNA by CD8α+ cross-presenting TiDCs upon its intratumoral (i.t.) delivery. We exploited this property to deliver mRNA encoding the costimulatory molecule CD70, the activation stimuli CD40 ligand, and constitutively active Toll-like receptor 4, referred to as TriMix mRNA. We show that TiDCs are reprogrammed to mature antigen-presenting cells that migrate to tumor-draining lymph nodes (TDLN). TriMix stimulated antitumor T-cell responses to spontaneously engulfed cancer antigens, including a neoepitope. We show in various mouse cancer models that i.t. delivery of TriMix mRNA results in systemic therapeutic antitumor immunity. Finally, we show that the induction of antitumor responses critically depends on TiDCs, whereas it only partially depends on TDLNs. As such, we provide a platform and a mechanistic rationale for the clinical testing of i.t. administration of TriMix mRNA. Cancer Immunol Res; 4(2); 146–56. ©2015 AACR.
Methods of Molecular Biology | 2014
Daphné Benteyn; An M.T. Van Nuffel; Sofie Wilgenhof; Aude Bonehill
Dendritic cells (DC) are key players in several types of cancer vaccines. Large numbers of DC can easily be generated in closed systems from the monocyte fraction of the peripheral blood. They are the professional antigen-presenting cells, and electroporation of mRNA-encoding tumor antigens is a very efficient and a relatively simple way to load the DC with antigen. The co-electroporation of a tumor antigen of choice and the combination of 3 costimulatory molecules, including CD70, caTLR4, and CD40L (TriMix-DC), leads to fully potent antigen-presenting DC able to generate a broad immune response.Here we describe the in vitro transcription of the mRNA and the subsequent generation and electroporation of autologous DC used for the treatment of melanoma patients.
Methods of Molecular Biology | 2016
Daphné Benteyn; Carlo Heirman; Kris Thielemans; Aude Bonehill
Dendritic cells (DCs) are the orchestrators of the immune system and are frequently used in clinical trials in order to boost the immune system in cancer patients. Among several available techniques for DC modification, mRNA electroporation is an interesting technique due to the favorable characteristics of mRNA. Antigen expression level and duration can be increased by multiple optimizations of an antigen-encoding mRNA template. Here, we describe different molecular modifications to a WT1-encoding mRNA construct in order to increase antigen expression and the subsequent introduction of mRNA into DCs.