Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where An Snellinx is active.

Publication


Featured researches published by An Snellinx.


Embo Molecular Medicine | 2009

Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function

Vanessa A. Morais; Patrik Verstreken; Anne Roethig; Joél Smet; An Snellinx; Mieke Vanbrabant; Dominik Haddad; Christian Frezza; Wilhelm Mandemakers; Daniela Vogt-Weisenhorn; Rudy Van Coster; Wolfgang Wurst; Luca Scorrano; Bart De Strooper

Mutations of the mitochondrial PTEN (phosphatase and tensin homologue)‐induced kinase1 (PINK1) are important causes of recessive Parkinson disease (PD). Studies on loss of function and overexpression implicate PINK1 in apoptosis, abnormal mitochondrial morphology, impaired dopamine release and motor deficits. However, the fundamental mechanism underlying these various phenotypes remains to be clarified. Using fruit fly and mouse models we show that PINK1 deficiency or clinical mutations impact on the function of Complex I of the mitochondrial respiratory chain, resulting in mitochondrial depolarization and increased sensitivity to apoptotic stress in mammalian cells and tissues. In Drosophila neurons, PINK1 deficiency affects synaptic function, as the reserve pool of synaptic vesicles is not mobilized during rapid stimulation. The fundamental importance of PINK1 for energy maintenance under increased demand is further corroborated as this deficit can be rescued by adding ATP to the synapse. The clinical relevance of our observations is demonstrated by the fact that human wild type PINK1, but not PINK1 containing clinical mutations, can rescue Complex 1 deficiency. Our work suggests that Complex I deficiency underlies, at least partially, the pathogenesis of this hereditary form of PD. As Complex I dysfunction is also implicated in sporadic PD, a convergence of genetic and environmental causes of PD on a similar mitochondrial molecular mechanism appears to emerge.


The Journal of Neuroscience | 2010

The Disintegrin/Metalloproteinase ADAM10 Is Essential for the Establishment of the Brain Cortex

Ellen Jorissen; Johannes Prox; Christian Bernreuther; Silvio Weber; Ralf Schwanbeck; Lutgarde Serneels; An Snellinx; Kathleen Craessaerts; Amantha Thathiah; Ina Tesseur; Udo Bartsch; Gisela Weskamp; Carl P. Blobel; Markus Glatzel; Bart De Strooper; Paul Saftig

The metalloproteinase and major amyloid precursor protein (APP) α-secretase candidate ADAM10 is responsible for the shedding of proteins important for brain development, such as cadherins, ephrins, and Notch receptors. Adam10 −/− mice die at embryonic day 9.5, due to major defects in development of somites and vasculogenesis. To investigate the function of ADAM10 in brain, we generated Adam10 conditional knock-out (cKO) mice using a Nestin-Cre promotor, limiting ADAM10 inactivation to neural progenitor cells (NPCs) and NPC-derived neurons and glial cells. The cKO mice die perinatally with a disrupted neocortex and a severely reduced ganglionic eminence, due to precocious neuronal differentiation resulting in an early depletion of progenitor cells. Premature neuronal differentiation is associated with aberrant neuronal migration and a disorganized laminar architecture in the neocortex. Neurospheres derived from Adam10 cKO mice have a disrupted sphere organization and segregated more neurons at the expense of astrocytes. We found that Notch-1 processing was affected, leading to downregulation of several Notch-regulated genes in Adam10 cKO brains, in accordance with the central role of ADAM10 in this signaling pathway and explaining the neurogenic phenotype. Finally, we found that α-secretase-mediated processing of APP was largely reduced in these neurons, demonstrating that ADAM10 represents the most important APP α-secretase in brain. Our study reveals that ADAM10 plays a central role in the developing brain by controlling mainly Notch-dependent pathways but likely also by reducing surface shedding of other neuronal membrane proteins including APP.


Journal of Biological Chemistry | 2009

ADAM10, the Rate-limiting Protease of Regulated Intramembrane Proteolysis of Notch and Other Proteins, Is Processed by ADAMS-9, ADAMS-15, and the γ-Secretase

Thomas Tousseyn; Amantha Thathiah; Ellen Jorissen; Tim Raemaekers; Uwe Konietzko; Karina Reiss; Elke Maes; An Snellinx; Lutgarde Serneels; Omar Nyabi; Wim Annaert; Paul Saftig; Dieter Hartmann; Bart De Strooper

ADAM10 is involved in the proteolytic processing and shedding of proteins such as the amyloid precursor protein (APP), cadherins, and the Notch receptors, thereby initiating the regulated intramembrane proteolysis (RIP) of these proteins. Here, we demonstrate that the sheddase ADAM10 is also subject to RIP. We identify ADAM9 and -15 as the proteases responsible for releasing the ADAM10 ectodomain, and Presenilin/γ-Secretase as the protease responsible for the release of the ADAM10 intracellular domain (ICD). This domain then translocates to the nucleus and localizes to nuclear speckles, thought to be involved in gene regulation. Thus, ADAM10 performs a dual role in cells, as a metalloprotease when it is membrane-bound, and as a potential signaling protein once cleaved by ADAM9/15 and the γ-Secretase.


Journal of Biological Chemistry | 2004

Limited redundancy of the proprotein convertase furin in mouse liver

Anton Roebroek; Neil A. Taylor; Els Louagie; Ilse Pauli; Liesbeth Smeijers; An Snellinx; A. Lauwers; Wim J.M. Van de Ven; Dieter Hartmann; John Creemers

Furin is an endoprotease of the family of mammalian proprotein convertases and is involved in the activation of a large variety of regulatory proteins by cleavage at basic motifs. A large number of substrates have been attributed to furin on the basis of in vitro and ex vivo data. However, no physiological substrates have been confirmed directly in a mammalian model system, and early embryonic lethality of a furin knock-out mouse model has precluded in vivo verification of most candidate substrates. Here, we report the generation and characterization of an interferon inducible Mx-Cre/loxP furin knock-out mouse model. Induction resulted in near-complete ablation of the floxed fur exon in liver. In sharp contrast with the general furin knock-out mouse model, no obvious adverse effects were observed in the transgenic mice after induction. Histological analysis of the liver did not reveal any overt deviations from normal morphology. Analysis of candidate substrates in liver revealed complete redundancy for the processing of the insulin receptor. Variable degrees of redundancy were observed for the processing of albumin, α5 integrin, lipoprotein receptor-related protein, vitronectin and α1-microglobulin/bikunin. None of the tested substrates displayed a complete block of processing. The absence of a severe phenotype raises the possibility of using furin as a local therapeutic target in the treatment of pathologies like cancer and viral infections, although the observed redundancy may require combination therapy or the development of a more broad spectrum convertase inhibitor.


Nature Medicine | 2013

β-arrestin 2 regulates Aβ generation and γ-secretase activity in Alzheimer's disease

Amantha Thathiah; Katrien Horré; An Snellinx; Elke Vandewyer; Yunhong Huang; Marta Ciesielska; Gerdien De Kloe; Sebastian Munck; Bart De Strooper

β-arrestins are associated with numerous aspects of G protein–coupled receptor (GPCR) signaling and regulation and accordingly influence diverse physiological and pathophysiological processes. Here we report that β-arrestin 2 expression is elevated in two independent cohorts of individuals with Alzheimers disease. Overexpression of β-arrestin 2 leads to an increase in amyloid-β (Aβ) peptide generation, whereas genetic silencing of Arrb2 (encoding β-arrestin 2) reduces generation of Aβ in cell cultures and in Arrb2−/− mice. Moreover, in a transgenic mouse model of Alzheimers disease, genetic deletion of Arrb2 leads to a reduction in the production of Aβ40 and Aβ42. Two GPCRs implicated previously in Alzheimers disease (GPR3 and the β2-adrenergic receptor) mediate their effects on Aβ generation through interaction with β-arrestin 2. β-arrestin 2 physically associates with the Aph-1a subunit of the γ-secretase complex and redistributes the complex toward detergent-resistant membranes, increasing the catalytic activity of the complex. Collectively, these studies identify β-arrestin 2 as a new therapeutic target for reducing amyloid pathology and GPCR dysfunction in Alzheimers disease.


Journal of Biological Chemistry | 2014

The Alzheimer Disease Protective Mutation A2T Modulates Kinetic and Thermodynamic Properties of Amyloid-β (Aβ) Aggregation

Iryna Benilova; Rodrigo Gallardo; Andreea Alexandra Ungureanu; Virginia Castillo Cano; An Snellinx; Meine Ramakers; Carmen Bartic; Frederic Rousseau; Joost Schymkowitz; Bart De Strooper

Background: Familial mutations in amyloid precursor protein (APP) increase amyloid-β peptide generation and aggregation leading to Alzheimer disease (AD). Results: A protective A2T mutation impairs not only β-secretase-mediated APP cleavage but also, unexpectedly, Aβ aggregation. Conclusion: The protective mutation modulates amyloid formation. Significance: The interpretation that a lifelong suppression of β-secretase is sufficient to protect against AD is not supported by these novel data. Missense mutations in alanine 673 of the amyloid precursor protein (APP), which corresponds to the second alanine of the amyloid β (Aβ) sequence, have dramatic impact on the risk for Alzheimer disease; A2V is causative, and A2T is protective. Assuming a crucial role of amyloid-Aβ in neurodegeneration, we hypothesized that both A2V and A2T mutations cause distinct changes in Aβ properties that may at least partially explain these completely different phenotypes. Using human APP-overexpressing primary neurons, we observed significantly decreased Aβ production in the A2T mutant along with an enhanced Aβ generation in the A2V mutant confirming earlier data from non-neuronal cell lines. More importantly, thioflavin T fluorescence assays revealed that the mutations, while having little effect on Aβ42 peptide aggregation, dramatically change the properties of the Aβ40 pool with A2V accelerating and A2T delaying aggregation of the Aβ peptides. In line with the kinetic data, Aβ A2T demonstrated an increase in the solubility at equilibrium, an effect that was also observed in all mixtures of the A2T mutant with the wild type Aβ40. We propose that in addition to the reduced β-secretase cleavage of APP, the impaired propensity to aggregate may be part of the protective effect conferred by A2T substitution. The interpretation of the protective effect of this mutation is thus much more complicated than proposed previously.


Embo Molecular Medicine | 2012

Modification of γ-secretase by nitrosative stress links neuronal ageing to sporadic Alzheimer's disease

Francesc X. Guix; Tina Wahle; Kristel M. Vennekens; An Snellinx; Lucía Chávez-Gutiérrez; Gerard ILL-Raga; Eva Ramos-Fernández; Cristina Guardia-Laguarta; Alberto Lleó; Muriel Arimon; Oksana Berezovska; Francisco J. Muñoz; Carlos G. Dotti; Bart De Strooper

Inherited familial Alzheimers disease (AD) is characterized by small increases in the ratio of Aβ42 versus Aβ40 peptide which is thought to drive the amyloid plaque formation in the brain of these patients. Little is known however whether ageing, the major risk factor for sporadic AD, affects amyloid beta‐peptide (Aβ) generation as well. Here we demonstrate that the secretion of Aβ is enhanced in an in vitro model of neuronal ageing, correlating with an increase in γ‐secretase complex formation. Moreover we found that peroxynitrite (ONOO−), produced by the reaction of superoxide anion with nitric oxide, promoted the nitrotyrosination of presenilin 1 (PS1), the catalytic subunit of γ‐secretase. This was associated with an increased association of the two PS1 fragments, PS1‐CTF and PS1‐NTF, which constitute the active catalytic centre. Furthermore, we found that peroxynitrite shifted the production of Aβ towards Aβ42 and increased the Aβ42/Aβ40 ratio. Our work identifies nitrosative stress as a potential mechanistic link between ageing and AD.


Science Translational Medicine | 2015

Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer’s disease mouse models

Yunhong Huang; Aneta Skwarek-Maruszewska; Katrien Horré; Elke Vandewyer; Leen Wolfs; An Snellinx; Takashi Saito; Enrico Radaelli; Nikky Corthout; Julien Colombelli; Adrian C. Lo; Leen Van Aerschot; Zsuzsanna Callaerts-Vegh; Daniah Trabzuni; Koen Bossers; Joost Verhaagen; Mina Ryten; Sebastian Munck; Rudi D’Hooge; Dick F. Swaab; John Hardy; Takaomi C. Saido; Bart De Strooper; Amantha Thathiah

Loss of GPR3 reduced amyloid plaque burden and improved cognition in four mouse models of Alzheimer’s disease, suggesting that GPR3 may be a potential therapeutic target. GPR3, a therapeutic target for AD? Alzheimer’s disease (AD) is characterized by the degeneration of brain networks involved in cognitive function. AD mouse models are used to study disease pathogenesis, but no single model fully captures the pathological changes in AD patients. Thus, extensive validation of AD therapeutic targets in multiple animal models is required before advancing to clinical research. In new work, Huang et al. determined that the absence of the G protein–coupled receptor 3 (GPR3), a protein expressed in the brain, alleviated the cognitive deficits and reduced amyloid pathology in four different disease-relevant mouse models of AD. Furthermore, GPR3 was found to be elevated in postmortem brain tissue from a subset of AD patients. This study demonstrates that GPR3 is a potential AD therapeutic target and provides the validation needed for future development of GPR3 modulators. The orphan G protein (heterotrimeric guanine nucleotide–binding protein)–coupled receptor (GPCR) GPR3 regulates activity of the γ-secretase complex in the absence of an effect on Notch proteolysis, providing a potential therapeutic target for Alzheimer’s disease (AD). However, given the vast resources required to develop and evaluate any new therapy for AD and the multiple failures involved in translational research, demonstration of the pathophysiological relevance of research findings in multiple disease-relevant models is necessary before initiating costly drug development programs. We evaluated the physiological consequences of loss of Gpr3 in four AD transgenic mouse models, including two that contain the humanized murine Aβ sequence and express similar amyloid precursor protein (APP) levels as wild-type mice, thereby reducing potential artificial phenotypes. Our findings reveal that genetic deletion of Gpr3 reduced amyloid pathology in all of the AD mouse models and alleviated cognitive deficits in APP/PS1 mice. Additional three-dimensional visualization and analysis of the amyloid plaque burden provided accurate information on the amyloid load, distribution, and volume in the structurally intact adult mouse brain. Analysis of 10 different regions in healthy human postmortem brain tissue indicated that GPR3 expression was stable during aging. However, two cohorts of human AD postmortem brain tissue samples showed a correlation between elevated GPR3 and AD progression. Collectively, these studies provide evidence that GPR3 mediates the amyloidogenic proteolysis of APP in four AD transgenic mouse models as well as the physiological processing of APP in wild-type mice, suggesting that GPR3 may be a potential therapeutic target for AD drug development.


Neurobiology of Disease | 2012

LRRK2 expression is enriched in the striosomal compartment of mouse striatum.

Wim Mandemakers; An Snellinx; Michael J. O'Neill; Bart De Strooper

In spite of a clear genetic link between Parkinsons disease (PD) and mutations in LRRK2, cellular localization and physiological function of LRRK2 remain debated. Here we demonstrate the immunohistochemical localization of LRRK2 in adult mouse and early postnatal mouse brain development. Antibody specificity is verified by absence of specific staining in LRRK2 knockout mouse brain. Although LRRK2 is expressed in various mouse brain regions (i.e. cortex, thalamus, hippocampus, cerebellum), strongest expression is detected in striatum, whereas LRRK2 protein expression in substantia nigra pars compacta in contrast is low. LRRK2 is highly expressed in striatal medium spiny neurons (MSN) and few cholinergic interneurons. LRRK2 expression is undetectable in other interneurons, oligodendrocytes or astrocytes of the striatum. Interestingly, LRRK2 expression is associated with striosome specific markers (i.e. MOR1, RASGRP1). Analysis of LRRK2 expression during early postnatal development and in LRRK2 knockout mice, demonstrates that LRRK2 is not required for generation or maintenance of the striosome compartment. Comparing LRRK2-WT, LRRK2-R1441G transgenic and non-transgenic mice, changes of LRRK2 expression in striosome/matrix compartments can be detected. The findings rule out a specific requirement of LRRK2 in striosome genesis but suggest a functional role for LRRK2 in striosomes.


Diabetologia | 2013

Co-regulation of intragenic microRNA miR-153 and its host gene Ia-2 β: identification of miR-153 target genes with functions related to IA-2β in pancreas and brain

Wilhelm Mandemakers; Liron Abuhatzira; Huanyu Xu; Leslie Ann Caromile; Sébastien S. Hébert; An Snellinx; Vanessa A. Morais; Samer Matta; T. Cai; Abner Louis Notkins; B. De Strooper

Aims/hypothesisWe analysed the genomic organisation of miR-153, a microRNA embedded in genes that encode two of the major type 1 diabetes autoantigens, islet-associated protein (IA)-2 and IA-2β. We also identified miR-153 target genes that correlated with IA-2β localisation and function.MethodsA bioinformatics approach was used to identify miR-153’s genomic organisation. To analyse the co-regulation of miR-153 and IA-2β, quantitative PCR analysis of miR-153 and Ia-2β (also known as Ptprn2) was performed after a glucose stimulation assay in MIN6B cells and isolated murine pancreatic islets, and also in wild-type Ia-2 (also known as Ptprn), Ia-2β single knockout and Ia-2/Ia-2β double knockout mouse brain and pancreatic islets. Bioinformatics identification of miR-153 target genes and validation via luciferase reporter assays, western blotting and quantitative PCR were also carried out.ResultsTwo copies of miR-153, miR-153-1 and miR-153-2, are localised in intron 19 of Ia-2 and Ia-2β, respectively. In rodents, only miR-153-2 is conserved. We demonstrated that expression of miR-153-2 and Ia-2β in rodents is partially co-regulated as demonstrated by a strong reduction of miR-153 expression levels in Ia-2β knockout and Ia-2/Ia-2β double knockout mice. miR-153 levels were unaffected in Ia-2 knockout mice. In addition, glucose stimulation, which increases Ia-2 and Ia-2β expression, also significantly increased expression of miR-153. Several predicted targets of miR-153 were reduced after glucose stimulation in vitro, correlating with the increase in miR-153 levels.Conclusions/interpretationThis study suggests the involvement of miR-153, IA-2β and miR-153 target genes in a regulatory network, which is potentially relevant to insulin and neurotransmitter release.

Collaboration


Dive into the An Snellinx's collaboration.

Top Co-Authors

Avatar

Bart De Strooper

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amantha Thathiah

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Lutgarde Serneels

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Sebastian Munck

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katrien Horré

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Elke Maes

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Elke Vandewyer

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Ellen Jorissen

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge