Ana Chueca
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Chueca.
FEBS Letters | 1997
Jean-Pierre Jacquot; Javier Lopez-Jaramillo; Myroslawa Miginiac-Maslow; Stéphane D. Lemaire; Jacqueline Cherfils; Ana Chueca; Julio Lopez-Gorge
Chloroplastic fructose‐1,6‐bisphosphatases are redox regulatory enzymes which are activated by the ferredoxin thioredoxin system via the reduction/isomerization of a critical disulfide bridge. All chloroplastic sequences contain seven cysteine residues, four of which are located in, or close to, an amino acid insertion region of approximately 17 amino acids. In order to gain more information on the nature of the regulatory site, five cysteine residues (Cys49, Cys153, Cys173, Cys178 and Cys190) have been modified individually into serine residues by site‐directed mutagenesis. While mutations C173S and C178S strongly affected the redox regulatory properties of the enzyme, the most striking effect was observed with the C153S mutant which became permanently active and redox independent. On the other hand, the C190S mutant retained most of the properties of the wild‐type enzyme (except that it could now also be partially activated by the NADPH/NTR/thioredoxin h system). Finally, the C49S mutant is essentially identical to the wild‐type enzyme. These results are discussed in the light of recent crystallographic data obtained on spinach FBPase [Villeret et al. (1995) Biochemistry 34, 4299–4306].
Journal of Molecular Evolution | 1996
Mariam Sahrawy; Valérie Hecht; Javier Lopez-Jaramillo; Ana Chueca; Yvette Chartier; Yves Meyer
In contrast to prokaryotes, which typically possess one thioredoxin gene per genome, three different thioredoxin types have been described in higher plants. All are encoded by nuclear genes, but thioredoxins m and f are chloroplastic while thioredoxins h have no transit peptide and are probably cytoplasmic. We have cloned and sequencedArabidopsis thaliana genomic fragments encoding the five previously described thioredoxins h, as well as a sixth gene encoding a new thioredoxin h. In spite of the high divergence of the sequences, five of them possess two introns at positions identical to the previously sequenced tobacco thioredoxin h gene, while a single one has only the first intron. The recently published sequence ofChlamydomonas thioredoxin h shows three introns, two at the same positions as in higher plants. This strongly suggests a common origin for all cytoplasmic thioredoxins of plants and green algae. In addition, we have cloned and sequenced pea DNA genomic fragments encoding thioredoxins m and f. The thioredoxin m sequence shows only one intron between the regions encoding the transit peptide and the mature protein, supporting the prokaryotic origin of this sequence and suggesting that its association with the transit peptide has been facilitated by exon shuffling. In contrast, the thioredoxin f sequence shows two introns, one at the same position as an intron in various plant and animal thioredoxins and the second at the same position as an intron in thioredoxin domains of disulfide isomerases. This strongly supports the hypothesis of a eukaryotic origin for chloroplastic thioredoxin f.
Frontiers in Plant Science | 2013
Antonio Jesús Serrato; Juan Fernández-Trijueque; Juan-de-Dios Barajas-López; Ana Chueca; Mariam Sahrawy
The sessile nature of plants forces them to face an ever-changing environment instead of escape from hostile conditions as animals do. In order to overcome this survival challenge, a fine monitoring and controlling of the status of the photosynthetic electron transport chain and the general metabolism is vital for these organisms. Frequently, evolutionary plant adaptation has consisted in the appearance of multigenic families, comprising an array of enzymes, structural components, or sensing, and signaling elements, in numerous occasions with highly conserved primary sequences that sometimes make it difficult to discern between redundancy and specificity among the members of a same family. However, all this gene diversity is aimed to sort environment-derived plant signals to efficiently channel the external incoming information inducing a right physiological answer. Oxygenic photosynthesis is a powerful source of reactive oxygen species (ROS), molecules with a dual oxidative/signaling nature. In response to ROS, one of the most frequent post-translational modifications occurring in redox signaling proteins is the formation of disulfide bridges (from Cys oxidation). This review is focused on the role of plastid thioredoxins (pTRXs), proteins containing two Cys in their active site and largely known as part of the plant redox-signaling network. Several pTRXs types have been described so far, namely, TRX f, m, x, y, and z. In recent years, improvements in proteomic techniques and the study of loss-of-function mutants have enabled us to grasp the importance of TRXs for the plastid physiology. We will analyze the specific signaling function of each TRX type and discuss about the emerging role in non-photosynthetic plastids of these redox switchers.
Plant Physiology | 1997
J. López Jaramillo; Ana Chueca; J P Jacquot; Rosario Hermoso; Juan J. Lázaro; Mariam Sahrawy; J. López Gorgé
A cDNA clone encoding pea (Pisum sativum L.) chloroplast thioredoxin (Trx) m and its transit peptide were isolated from a pea cDNA library. Its deduced amino acid sequence showed 70% homology with spinach (Spinacia oleracea L.) Trx m and 25% homology with Trx f from pea and spinach. After subcloning in the Ndel-BamHI sites of pET-12a, the recombinant supplied 20 mg Trx m/L Escherichia coli culture. This protein had 108 amino acids and was 12,000 D, which is identical to the pea leaf native protein. Unlike pea Trx f, pea Trx m showed a hyperbolic saturation of pea chloroplast fructose-1,6-bisphosphatase (FBPase), with a Trx m/FBPase molar saturation ratio of about 60, compared with 4 for the Trx f/FBPase quotient. Cross-experiments have shown the ability of pea Trx m to activate the spinach chloroplast FBPase, results that are in contrast with those in spinach found by P. Schurmann, K. Maeda, and A. Tsugita ([1981] Eur J Biochem 116: 37–45), who did not find Trx m efficiency in FBPase activation. This higher efficiency of pea Trx m could be related to the presence of four basic residues (arginine-37, lysine-70, arginine-74, and lysine-97) flanking the regulatory cluster; spinach Trx m lacks the positive charge corresponding to lysine-70 of pea Trx m. This has been confirmed by K70E mutagenesis of pea Trx m, which leads to a 50% decrease in FBPase activation.
Plant Physiology | 2007
Juan de Dios Barajas-López; Antonio Jesús Serrato; Adela Olmedilla; Ana Chueca; Mariam Sahrawy
Plant thioredoxins (TRXs) are involved in redox regulation of a wide variety processes and usually exhibit organ specificity. We report strong evidence that chloroplastic TRXs are localized in heterotrophic tissues and suggest some ways in which they might participate in several metabolic and developmental processes. The promoter regions of the chloroplastic f and m1 TRX genes were isolated from a pea (Pisum sativum) plant genomic bank. Histochemical staining for β-glucuronidase (GUS) in transgenic homozygous Arabidopsis (Arabidopsis thaliana) plants showed preferential expression of the 444-bp PsTRXf1 promoter in early seedlings, stems, leaves, and roots, as well as in flowers, stigma, pollen grains, and filaments. GUS activity under the control of the 1,874-bp PsTRXm1 promoter was restricted to the leaves, roots, seeds, and flowers. To gain insight into the translational regulation of these genes, a series of deletions of 5′ elements in both TRX promoters were analyzed. The results revealed that a 126-bp construct of the PsTRXf2 promoter was unable to reproduce the expression pattern observed with the full promoter. The differences in expression and tissue specificity between PsTRXm1 and the deleted promoters PsTRXm2 and PsTRXm3 suggest the existence of upstream positive or negative regulatory regions that affect tissue specificity, sucrose metabolism, and light regulation. PsTRXm1 expression is finely regulated by light and possibly by other metabolic factors. In situ hybridization experiments confirmed new localizations of these chloroplastic TRX transcripts in vascular tissues and flowers, and therefore suggest possible new functions in heterotrophic tissues related to cell division, germination, and plant reproduction.
Plant Physiology | 2006
José A. Traverso; Florence Vignols; Roland Cazalis; Amada Pulido; Mariam Sahrawy; Francisco Javier Cejudo; Yves Meyer; Ana Chueca
Thioredoxins (TRXs) are small ubiquitous oxidoreductases involved in disulfide bond reduction of a large panel of target proteins. The most complex cluster in the family of plant TRXs is formed by h-type TRXs. In Arabidopsis (Arabidopsis thaliana), nine members of this subgroup were described, which are less well known than their plastidial counterparts. The functional study of type-h TRXs is difficult because of the high number of isoforms and their similar biochemical characteristics, thus raising the question whether they have specific or redundant functions. Type-h TRXs are involved in seed germination and self incompatibility in pollen-pistil interaction. Their function as antioxidants has recently been proposed, but further work is needed to clarify this function in plants. In this study, we describe two new h-type TRXs from pea (Pisum sativum; stated PsTRXh1 and PsTRXh2). By functional complementation of a yeast (Saccharomyces cerevisiae) trx1Δ trx2Δ double mutant, we demonstrate that PsTRXh1 is involved in the redox-imbalance control, possibly through its interaction with peroxiredoxins. In contrast, PsTRXh2 provokes a phenotype of hypersensitivity to hydrogen peroxide in the yeast mutant. Furthermore, we show differential gene expression and protein accumulation of the two isoforms, PsTRXh1 protein being abundantly detected in vascular tissue and flowers, whereas PsTRXh2 gene expression was hardly detectable. By comparison with previous data of additional PsTRXh isoforms, our results indicate specific functions for the pea h-type TRXs so far described.
Phytochemistry | 1974
Juan J. Lázaro; Ana Chueca; J. López Gorgé; Federico Mayor
Abstract The enzyme fructose- 1,6-diphosphatase (FDPase), involved in the reductive cycle of the pentose phosphate pathway, has been purified from spinach leaves by heating (30 min at 60°), “salting out” with ammonium sulphate (between 30–70% of saturation), filtration through Sephadex G-100 and G-200, fractionation on DEAE-52 cellulose and preparative electrophoresis on polyacrylamide gel. Filtration through DEAE-cellulose led to the isolation of two active fractions (fractions I and II) with very close MWs and isoelectric points. By electrophoresis on acrylamide gel, both fractions gave two active fractions (fractions I a -I b and II a -II b ). The fractions with low electrophoretic migration rate—I b and II b —are stable in acid and neutral pH, have a MW between 90 000 and 110 000 and constitute the native form of the photosynthetic enzyme. The fractions of faster migration rate—I a and II a -originate from the corresponding fractions I b and II b under alkaline conditions, show half the MW of the respective fractions, and behave as subunits of the original dimer form. Measured by electrofocusing, the four active fractions have isoclectric points in the range 4·10–4.30.
Photosynthesis Research | 2002
Ana Chueca; Mariam Sahrawy; Eduardo A. Pagano; Julio López Gorgé
Redox regulation of photosynthetic enzymes has been a preferred research topic in recent years. In this area chloroplast fructose-1,6-bisphosphatase is probably the most extensively studied target enzyme of the CO2 assimilation pathway. This review analyzes the structure, biosynthesis, phylogeny, action mechanism, regulation and kinetics of fructose-1,6-bisphosphatase in the light of recent findings on structure–function relationship, and from a molecular biology viewpoint.
Biochimica et Biophysica Acta | 2001
Owen S. Wangensteen; Ana Chueca; Masakazu Hirasawa; Mariam Sahrawy; David B. Knaff; Julio López Gorgé
It has been proposed that a hydrophobic groove surrounded by positively charged amino acids on thioredoxin (Trx) serves as the recognition and docking site for the interaction of Trx with target proteins. This model for Trx-protein interactions fits well with the Trx-mediated fructose-1,6-bisphosphatase (FBPase) activation, where a protruding negatively charged loop of FBPase would bind to this Trx groove, in a process involving both electrostatic and hydrophobic interactions. This model facilitates the prediction of Trx amino acid residues likely to be involved in enzyme binding. Site-directed mutagenesis of some of these amino acids, in conjunction with measurements of the FBPase activation capacity of the wild type and mutated Trxs, was used to check the model and provided evidence that lysine-70 and arginine-74 of pea Trx m play an essential role in FBPase binding. The binding parameters for the interaction between chloroplast FBPase and the wild type pea Trxs f and m, as well as mutated pea Trx m, determined by equilibrium dialysis in accordance with the Koshland-Nemethy-Filmer model of saturation kinetics, provided additional support for the role of these basic Trx residues in the interaction with FBPase. These data, in conjunction with the midpoint redox potential (E(m)) determinations of Trxs, support the hydrophobic groove model for the interaction between chloroplast FBPase and Trx. This model predicts that differences in the FBPase activation capacity of Trxs arise from their different binding abilities.
Journal of Experimental Botany | 2008
José A. Traverso; Florence Vignols; Roland Cazalis; Antonio Jesús Serrato; Pablo Pulido; Mariam Sahrawy; Yves Meyer; Francisco Javier Cejudo; Ana Chueca
Plants are the organisms containing the most complex multigenic family for thioredoxins (TRX). Several types of TRXs are targeted to chloroplasts, which have been classified into four subgroups: m, f, x, and y. Among them, TRXs f and m were the first plastidial TRXs characterized, and their function as redox modulators of enzymes involved in carbon assimilation in the chloroplast has been well-established. Both TRXs, f and m, were named according to their ability to reduce plastidial fructose-1,6-bisphosphatase (FBPase) and malate dehydrogenase (MDH), respectively. Evidence is presented here based on the immunocytochemistry of the localization of f and m-type TRXs from Pisum sativum in non-photosynthetic tissues. Both TRXs showed a different spatial pattern. Whilst PsTRXm was localized to vascular tissues of all the organs analysed (leaves, stems, and roots), PsTRXf was localized to more specific cells next to xylem vessels and vascular cambium. Heterologous complementation analysis of the yeast mutant EMY63, deficient in both yeast TRXs, by the pea plastidial TRXs suggests that PsTRXm, but not PsTRXf, is involved in the mechanism of reactive oxygen species (ROS) detoxification. In agreement with this function, the PsTRXm gene was induced in roots of pea plants in response to hydrogen peroxide.