Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariam Sahrawy is active.

Publication


Featured researches published by Mariam Sahrawy.


The Plant Cell | 2006

Rice NTRC Is a High-Efficiency Redox System for Chloroplast Protection against Oxidative Damage

Juan Manuel Pérez-Ruiz; María Cristina Spínola; Kerstin Kirchsteiger; Javier Moreno; Mariam Sahrawy; Francisco Javier Cejudo

One of the mechanisms plants have developed for chloroplast protection against oxidative damage involves a 2-Cys peroxiredoxin, which has been proposed to be reduced by ferredoxin and plastid thioredoxins, Trx x and CDSP32, the FTR/Trx pathway. We show that rice (Oryza sativa) chloroplast NADPH THIOREDOXIN REDUCTASE (NTRC), with a thioredoxin domain, uses NADPH to reduce the chloroplast 2-Cys peroxiredoxin BAS1, which then reduces hydrogen peroxide. The presence of both NTR and Trx-like domains in a single polypeptide is absolutely required for the high catalytic efficiency of NTRC. An Arabidopsis thaliana knockout mutant for NTRC shows irregular mesophyll cell shape, abnormal chloroplast structure, and unbalanced BAS1 redox state, resulting in impaired photosynthesis rate under low light. Constitutive expression of wild-type NTRC in mutant transgenic lines rescued this phenotype. Moreover, prolonged darkness followed by light/dark incubation produced an increase in hydrogen peroxide and lipid peroxidation in leaves and accelerated senescence of NTRC-deficient plants. We propose that NTRC constitutes an alternative system for chloroplast protection against oxidative damage, using NADPH as the source of reducing power. Since no light-driven reduced ferredoxin is produced at night, the NTRC-BAS1 pathway may be a key detoxification system during darkness, with NADPH produced by the oxidative pentose phosphate pathway as the source of reducing power.


Journal of Experimental Botany | 2010

Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts

Pablo Pulido; María Cristina Spínola; Kerstin Kirchsteiger; Manuel Guinea; María Belén Pascual; Mariam Sahrawy; Luisa M. Sandalio; Karl-Josef Dietz; Maricruz González; Francisco Javier Cejudo

Photosynthesis is a process that inevitably produces reactive oxygen species, such as hydrogen peroxide, which is reduced by chloroplast-localized detoxification mechanisms one of which involves 2-Cys peroxiredoxins (2-Cys Prxs). Arabidopsis chloroplasts contain two very similar 2-Cys Prxs (denoted A and B). These enzymes are reduced by two pathways: NADPH thioredoxin reductase C (NTRC), which uses NADPH as source of reducing power; and plastidial thioredoxins (Trxs) coupled to photosynthetically reduced ferredoxin of which Trx x is the most efficient reductant in vitro. With the aim of establishing the functional relationship between NTRC, Trx x, and 2-Cys Prxs in vivo, an Arabidopsis Trx x knock-out mutant has been identified and a double mutant (denoted Δ2cp) with <5% of 2-Cys Prx content has been generated. The phenotypes of the three mutants, ntrc, trxx, and Δ2cp, were compared under standard growth conditions and in response to continuous light or prolonged darkness and oxidative stress. Though all mutants showed altered redox homeostasis, no difference was observed in response to oxidative stress treatment. Moreover, the redox status of the 2-Cys Prx was imbalanced in the ntrc mutant but not in the trxx mutant. These results show that NTRC is the most relevant pathway for chloroplast 2-Cys Prx reduction in vivo, but the antioxidant function of this system is not essential. The deficiency of NTRC caused a more severe phenotype than the deficiency of Trx x or 2-Cys Prxs as determined by growth, pigment content, CO2 fixation, and Fv/Fm, indicating additional functions of NTRC.


Journal of Molecular Evolution | 1996

Intron position as an evolutionary marker of thioredoxins and thioredoxin domains.

Mariam Sahrawy; Valérie Hecht; Javier Lopez-Jaramillo; Ana Chueca; Yvette Chartier; Yves Meyer

In contrast to prokaryotes, which typically possess one thioredoxin gene per genome, three different thioredoxin types have been described in higher plants. All are encoded by nuclear genes, but thioredoxins m and f are chloroplastic while thioredoxins h have no transit peptide and are probably cytoplasmic. We have cloned and sequencedArabidopsis thaliana genomic fragments encoding the five previously described thioredoxins h, as well as a sixth gene encoding a new thioredoxin h. In spite of the high divergence of the sequences, five of them possess two introns at positions identical to the previously sequenced tobacco thioredoxin h gene, while a single one has only the first intron. The recently published sequence ofChlamydomonas thioredoxin h shows three introns, two at the same positions as in higher plants. This strongly suggests a common origin for all cytoplasmic thioredoxins of plants and green algae. In addition, we have cloned and sequenced pea DNA genomic fragments encoding thioredoxins m and f. The thioredoxin m sequence shows only one intron between the regions encoding the transit peptide and the mature protein, supporting the prokaryotic origin of this sequence and suggesting that its association with the transit peptide has been facilitated by exon shuffling. In contrast, the thioredoxin f sequence shows two introns, one at the same position as an intron in various plant and animal thioredoxins and the second at the same position as an intron in thioredoxin domains of disulfide isomerases. This strongly supports the hypothesis of a eukaryotic origin for chloroplastic thioredoxin f.


Frontiers in Plant Science | 2013

Plastid thioredoxins: a "one-for-all" redox-signaling system in plants

Antonio Jesús Serrato; Juan Fernández-Trijueque; Juan-de-Dios Barajas-López; Ana Chueca; Mariam Sahrawy

The sessile nature of plants forces them to face an ever-changing environment instead of escape from hostile conditions as animals do. In order to overcome this survival challenge, a fine monitoring and controlling of the status of the photosynthetic electron transport chain and the general metabolism is vital for these organisms. Frequently, evolutionary plant adaptation has consisted in the appearance of multigenic families, comprising an array of enzymes, structural components, or sensing, and signaling elements, in numerous occasions with highly conserved primary sequences that sometimes make it difficult to discern between redundancy and specificity among the members of a same family. However, all this gene diversity is aimed to sort environment-derived plant signals to efficiently channel the external incoming information inducing a right physiological answer. Oxygenic photosynthesis is a powerful source of reactive oxygen species (ROS), molecules with a dual oxidative/signaling nature. In response to ROS, one of the most frequent post-translational modifications occurring in redox signaling proteins is the formation of disulfide bridges (from Cys oxidation). This review is focused on the role of plastid thioredoxins (pTRXs), proteins containing two Cys in their active site and largely known as part of the plant redox-signaling network. Several pTRXs types have been described so far, namely, TRX f, m, x, y, and z. In recent years, improvements in proteomic techniques and the study of loss-of-function mutants have enabled us to grasp the importance of TRXs for the plastid physiology. We will analyze the specific signaling function of each TRX type and discuss about the emerging role in non-photosynthetic plastids of these redox switchers.


Plant Physiology | 1997

High-Yield Expression of Pea Thioredoxin m and Assessment of Its Efficiency in Chloroplast Fructose-1,6-Bisphosphatase Activation

J. López Jaramillo; Ana Chueca; J P Jacquot; Rosario Hermoso; Juan J. Lázaro; Mariam Sahrawy; J. López Gorgé

A cDNA clone encoding pea (Pisum sativum L.) chloroplast thioredoxin (Trx) m and its transit peptide were isolated from a pea cDNA library. Its deduced amino acid sequence showed 70% homology with spinach (Spinacia oleracea L.) Trx m and 25% homology with Trx f from pea and spinach. After subcloning in the Ndel-BamHI sites of pET-12a, the recombinant supplied 20 mg Trx m/L Escherichia coli culture. This protein had 108 amino acids and was 12,000 D, which is identical to the pea leaf native protein. Unlike pea Trx f, pea Trx m showed a hyperbolic saturation of pea chloroplast fructose-1,6-bisphosphatase (FBPase), with a Trx m/FBPase molar saturation ratio of about 60, compared with 4 for the Trx f/FBPase quotient. Cross-experiments have shown the ability of pea Trx m to activate the spinach chloroplast FBPase, results that are in contrast with those in spinach found by P. Schurmann, K. Maeda, and A. Tsugita ([1981] Eur J Biochem 116: 37–45), who did not find Trx m efficiency in FBPase activation. This higher efficiency of pea Trx m could be related to the presence of four basic residues (arginine-37, lysine-70, arginine-74, and lysine-97) flanking the regulatory cluster; spinach Trx m lacks the positive charge corresponding to lysine-70 of pea Trx m. This has been confirmed by K70E mutagenesis of pea Trx m, which leads to a 50% decrease in FBPase activation.


Plant Physiology | 2013

Loss of Starch Granule Initiation Has a Deleterious Effect on the Growth of Arabidopsis Plants Due to an Accumulation of ADP-Glucose

Paula Ragel; Sebastian Streb; Regina Feil; Mariam Sahrawy; Maria Grazia Annunziata; John E. Lunn; Samuel C. Zeeman; Ángel Mérida

ADP-Glc in the starch-deficient mutant ss3/ss4 sequesters adenine nucleotides, which limits photophosphorylation, leads to photooxidative stress, and causes the chlorotic and stunted phenotypes. STARCH SYNTHASE4 (SS4) is required for proper starch granule initiation in Arabidopsis (Arabidopsis thaliana), although SS3 can partially replace its function. Unlike other starch-deficient mutants, ss4 and ss3/ss4 mutants grow poorly even under long-day conditions. They have less chlorophyll and carotenoids than the wild type and lower maximal rates of photosynthesis. There is evidence of photooxidative damage of the photosynthetic apparatus in the mutants from chlorophyll a fluorescence parameters and their high levels of malondialdehyde. Metabolite profiling revealed that ss3/ss4 accumulates over 170 times more ADP-glucose (Glc) than wild-type plants. Restricting ADP-Glc synthesis, by introducing mutations in the plastidial phosphoglucomutase (pgm1) or the small subunit of ADP-Glc pyrophosphorylase (aps1), largely restored photosynthetic capacity and growth in pgm1/ss3/ss4 and aps1/ss3/ss4 triple mutants. It is proposed that the accumulation of ADP-Glc in the ss3/ss4 mutant sequesters a large part of the plastidial pools of adenine nucleotides, which limits photophosphorylation, leading to photooxidative stress, causing the chlorotic and stunted growth phenotypes of the plants.


Plant Physiology | 2007

Localization in Roots and Flowers of Pea Chloroplastic Thioredoxin f and Thioredoxin m Proteins Reveals New Roles in Nonphotosynthetic Organs

Juan de Dios Barajas-López; Antonio Jesús Serrato; Adela Olmedilla; Ana Chueca; Mariam Sahrawy

Plant thioredoxins (TRXs) are involved in redox regulation of a wide variety processes and usually exhibit organ specificity. We report strong evidence that chloroplastic TRXs are localized in heterotrophic tissues and suggest some ways in which they might participate in several metabolic and developmental processes. The promoter regions of the chloroplastic f and m1 TRX genes were isolated from a pea (Pisum sativum) plant genomic bank. Histochemical staining for β-glucuronidase (GUS) in transgenic homozygous Arabidopsis (Arabidopsis thaliana) plants showed preferential expression of the 444-bp PsTRXf1 promoter in early seedlings, stems, leaves, and roots, as well as in flowers, stigma, pollen grains, and filaments. GUS activity under the control of the 1,874-bp PsTRXm1 promoter was restricted to the leaves, roots, seeds, and flowers. To gain insight into the translational regulation of these genes, a series of deletions of 5′ elements in both TRX promoters were analyzed. The results revealed that a 126-bp construct of the PsTRXf2 promoter was unable to reproduce the expression pattern observed with the full promoter. The differences in expression and tissue specificity between PsTRXm1 and the deleted promoters PsTRXm2 and PsTRXm3 suggest the existence of upstream positive or negative regulatory regions that affect tissue specificity, sucrose metabolism, and light regulation. PsTRXm1 expression is finely regulated by light and possibly by other metabolic factors. In situ hybridization experiments confirmed new localizations of these chloroplastic TRX transcripts in vascular tissues and flowers, and therefore suggest possible new functions in heterotrophic tissues related to cell division, germination, and plant reproduction.


Plant Physiology | 2006

PsTRXh1 and PsTRXh2 Are Both Pea h-Type Thioredoxins with Antagonistic Behavior in Redox Imbalances

José A. Traverso; Florence Vignols; Roland Cazalis; Amada Pulido; Mariam Sahrawy; Francisco Javier Cejudo; Yves Meyer; Ana Chueca

Thioredoxins (TRXs) are small ubiquitous oxidoreductases involved in disulfide bond reduction of a large panel of target proteins. The most complex cluster in the family of plant TRXs is formed by h-type TRXs. In Arabidopsis (Arabidopsis thaliana), nine members of this subgroup were described, which are less well known than their plastidial counterparts. The functional study of type-h TRXs is difficult because of the high number of isoforms and their similar biochemical characteristics, thus raising the question whether they have specific or redundant functions. Type-h TRXs are involved in seed germination and self incompatibility in pollen-pistil interaction. Their function as antioxidants has recently been proposed, but further work is needed to clarify this function in plants. In this study, we describe two new h-type TRXs from pea (Pisum sativum; stated PsTRXh1 and PsTRXh2). By functional complementation of a yeast (Saccharomyces cerevisiae) trx1Δ trx2Δ double mutant, we demonstrate that PsTRXh1 is involved in the redox-imbalance control, possibly through its interaction with peroxiredoxins. In contrast, PsTRXh2 provokes a phenotype of hypersensitivity to hydrogen peroxide in the yeast mutant. Furthermore, we show differential gene expression and protein accumulation of the two isoforms, PsTRXh1 protein being abundantly detected in vascular tissue and flowers, whereas PsTRXh2 gene expression was hardly detectable. By comparison with previous data of additional PsTRXh isoforms, our results indicate specific functions for the pea h-type TRXs so far described.


Photosynthesis Research | 2002

Chloroplast fructose-1,6-bisphosphatase: structure and function.

Ana Chueca; Mariam Sahrawy; Eduardo A. Pagano; Julio López Gorgé

Redox regulation of photosynthetic enzymes has been a preferred research topic in recent years. In this area chloroplast fructose-1,6-bisphosphatase is probably the most extensively studied target enzyme of the CO2 assimilation pathway. This review analyzes the structure, biosynthesis, phylogeny, action mechanism, regulation and kinetics of fructose-1,6-bisphosphatase in the light of recent findings on structure–function relationship, and from a molecular biology viewpoint.


Biochimica et Biophysica Acta | 2001

Binding features of chloroplast fructose-1,6-bisphosphatase-thioredoxin interaction

Owen S. Wangensteen; Ana Chueca; Masakazu Hirasawa; Mariam Sahrawy; David B. Knaff; Julio López Gorgé

It has been proposed that a hydrophobic groove surrounded by positively charged amino acids on thioredoxin (Trx) serves as the recognition and docking site for the interaction of Trx with target proteins. This model for Trx-protein interactions fits well with the Trx-mediated fructose-1,6-bisphosphatase (FBPase) activation, where a protruding negatively charged loop of FBPase would bind to this Trx groove, in a process involving both electrostatic and hydrophobic interactions. This model facilitates the prediction of Trx amino acid residues likely to be involved in enzyme binding. Site-directed mutagenesis of some of these amino acids, in conjunction with measurements of the FBPase activation capacity of the wild type and mutated Trxs, was used to check the model and provided evidence that lysine-70 and arginine-74 of pea Trx m play an essential role in FBPase binding. The binding parameters for the interaction between chloroplast FBPase and the wild type pea Trxs f and m, as well as mutated pea Trx m, determined by equilibrium dialysis in accordance with the Koshland-Nemethy-Filmer model of saturation kinetics, provided additional support for the role of these basic Trx residues in the interaction with FBPase. These data, in conjunction with the midpoint redox potential (E(m)) determinations of Trxs, support the hydrophobic groove model for the interaction between chloroplast FBPase and Trx. This model predicts that differences in the FBPase activation capacity of Trxs arise from their different binding abilities.

Collaboration


Dive into the Mariam Sahrawy's collaboration.

Top Co-Authors

Avatar

Ana Chueca

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Antonio Jesús Serrato

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan J. Lázaro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Julio López Gorgé

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Rosario Hermoso

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco Javier Cejudo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J. López Gorgé

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

José A. Traverso

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Juan de Dios Barajas-López

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge