Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Cristina Calvo is active.

Publication


Featured researches published by Ana Cristina Calvo.


British Journal of Nutrition | 2007

Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout ( Salmo trutta )

José Luis Balcázar; Ignacio de Blas; Imanol Ruiz-Zarzuela; Daniel Vendrell; Ana Cristina Calvo; Isabel Márquez; Olivia Gironés; José Luis Múzquiz

We studied the effect of several lactic acid bacteria (LAB) on the humoral response of brown trout (Salmo trutta). LAB groups (Lactococcus (Lc.) lactis ssp. lactis, Lactobacillus (Lb.) sakei and Leuconostoc (Leu.) mesenteroides) were administered orally at 10(6) colony-forming units/g feed to brown trout for 2 weeks, after which fish were switched to an unsupplemented feed. Blood and intestinal samples were taken from the onset of feeding supplemented diets at 1, 2, 3 and 4 weeks. During the LAB-feeding period, Lc. lactis ssp. lactis, Lb. sakei and Leu. mesenteroides persisted in the fish intestines, but the number of LAB slowly decreased in the intestines after changing to the unsupplemented diet. Only Lb. lactis ssp. lactis and Leu. mesenteroides were detected at levels above 1 x 10(2) colony-forming units/g at the end of the fourth week. In comparison to untreated control fish, the alternative complement activity in the serum was found to be significantly greater in all LAB groups at the end of the second week. Groups supplemented with Lc. lactis ssp. lactis and Leu. mesenteroides exhibited an elevated level of lysozyme activity at the end of the third week, but the group supplemented with Lb. sakei did not exhibit any significant change in lysozyme activity. Serum immunoglobulin levels were higher compared with the control group, but there was no significant difference between the LAB and control groups.


Journal of Molecular Medicine | 2010

Fragment C of tetanus toxin, more than a carrier. Novel perspectives in non-viral ALS gene therapy

María Moreno-Igoa; Ana Cristina Calvo; Clara Penas; Raquel Manzano; Sara Oliván; María Jesús Muñoz; Renzo Mancuso; Pilar Zaragoza; José Aguilera; Xavier Navarro; Rosario Osta Pinzolas

The non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC) has been implicated in the activation of cascades responsible for trophic actions and neuroprotection by inhibition of apoptosis. Previous in vitro studies have described signalling pathways that underlie the administration of TTC to neurons. We investigated whether these properties were maintained in a mouse model of neurodegenerative disease. Naked DNA encoding for TTC was injected intramuscularly and neuromuscular function and clinical behaviour were monitored until endstage in the transgenic SOD1G93A mouse model that expresses a mutant variant of human superoxide dismutase 1 (SOD1). Our results indicate that TTC treatment ameliorated the decline of hindlimb muscle innervation, significantly delayed the onset of symptoms and functional deficits, improved spinal motor neuron survival, and prolonged lifespan. Furthermore, we found that caspase-1 and caspase-3 proapoptotic genes were down-regulated in the spinal cord of treated mice. Western blot analysis showed that the active form of caspase-3 was also down-regulated after TTC treatment and survival signals, such as the significant phosphorylation of serine/threonine protein kinase Akt, were also detected. These results suggest that fragment C of tetanus toxin, TTC, provides a potential therapy for neurodegenerative diseases.


PLOS ONE | 2012

Genetic Biomarkers for ALS Disease in Transgenic SOD1G93A Mice

Ana Cristina Calvo; Raquel Manzano; Gabriela Atencia-Cibreiro; Sara Oliván; María Jesús Muñoz; Pilar Zaragoza; Pilar Cordero-vázquez; Jesús Esteban-Pérez; Alberto García-Redondo; Rosario Osta

The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS) are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturers protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10) could be considered potential genetic biomarkers of longevity in transgenic SOD1G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.


Orphanet Journal of Rare Diseases | 2011

Lack of a synergistic effect of a non-viral ALS gene therapy based on BDNF and a TTC fusion molecule.

Ana Cristina Calvo; María Moreno-Igoa; Renzo Mancuso; Raquel Manzano; Sara Oliván; María Jesús Muñoz; Clara Penas; Pilar Zaragoza; Xavier Navarro; Rosario Osta

BackgroundAmyotrophic lateral sclerosis (ALS) is one of the most devastating neurodegenerative diseases. Neurotrophic factors have been widely tested to counteract neurodegenerative conditions, despite their unspecific neuronal access. The non-toxic C-terminal fragment of the tetanus toxin (TTC) heavy chain has been studied not only as a carrier molecule to the CNS but also as a neuroprotective agent. Because the neurotrophic effects of BDNF have been demonstrated in vitro and in vivo, the question addressed in this work is whether a fusion molecule of BDNF-TTC may have a synergistic effect and enhance the neuroprotective properties of TTC alone in a mouse model of ALS.MethodsRecombinant plasmid constructs (pCMV-TTC and pCMV-BDNF-TTC) were injected into the quadriceps femoris and triceps brachialis muscles of SOD1G93A transgenic mice at 8 weeks of age. The hanging wire and rotarod tests were performed to assess motor coordination, strength and balance. Electrophysiological tests, morphological assays of spinal cord sections of L2 and L4 segments, and gene and protein expression analyses were performed. The Kaplan-Meier survival analysis test was used for comparisons of survival. Multiple comparisons of data were analyzed using a one-way analysis of variance (ANOVA).ResultsTreatment with the fusion-molecule BDNF-TTC and with TTC alone significantly delayed the onset of symptoms and functional deficits of SOD1G93A mice. Muscle innervation was partially preserved with these treatments, and the number of surviving motoneurons in L2 spinal cord segment was increased particularly by the fusion protein induction. Inhibition of pro-apoptotic protein targets (caspase-3 and Bax) and significant phosphorylation of Akt and ERK were also found in the spinal cord of treated mice.ConclusionsSignificant improvements in behavioral and electrophysiological results, motoneuron survival and anti-apoptotic/survival-activated pathways were observed with BDNF-TTC treatment. However, no synergistic effect was found for this fusion molecule. Although BDNF in the fusion molecule is capable of activating autocrine and neuroprotective pathways, TTC treatment alone yielded similar neuroprotection. Therefore, an accurate study of the neuroprotective effects of TTC fusion molecules should be performed to obtain a better understanding of its effects.


Neurodegenerative Diseases | 2011

Altered Expression of Myogenic Regulatory Factors in the Mouse Model of Amyotrophic Lateral Sclerosis

Raquel Manzano; Janne M. Toivonen; Sara Oliván; Ana Cristina Calvo; María Moreno-Igoa; María Jesús Muñoz; Pilar Zaragoza; Alberto García-Redondo; Rosario Osta

Background: In the superoxide dismutase 1 (SOD1)-G93A mouse model of amyotrophic lateral sclerosis (ALS), skeletal muscle is a key target of mutant SOD1 toxicity. However, the expression of factors that control the regenerative potential of the muscle is unknown in this model. Objective: To characterize the expression of satellite cell marker Pax7 and myogenic regulatory factors (MRF) in skeletal muscle of SOD1-G93A mice at different stages of the disease. Methods: The expressions of Pax7, Myod1, Myf5 and myogenin (Myog) were determined by quantitative real-time PCR and by Western blotting from the grouped gastrocnemius, quadriceps and soleus muscles of SOD1-G93A mice at presymptomatic, symptomatic and terminal stages of the disease, and from surgically denervated wild-type gastrocnemius muscles. Results:Pax7 mRNA and MYF5 protein were upregulated in presymptomatic mice, coinciding with increased muscle damage marker Rrad and chemokine Ccl5. All MRF transcripts and most proteins (excluding MYOG) were increased, starting from 3 months of age, simultaneously with increased expression of denervation marker Chrna1. However, in the terminal stage, no protein increase was evident for Pax7 or any of the MRF despite the increased mRNA levels. The transcripts for chemokine Ccl2 and chemokine receptor Cxcr4 were increased starting from the onset of symptoms. Conclusions: The characterization of Pax7 and MRF in SOD1-G93A mice reveals a progressive induction of the myogenic program at the RNA level, but a blunted protein level response at late stages of the disease. Altered posttranscriptional and posttranslational mechanisms likely to operate, as well as the potential role of chemokine signaling in mutant SOD1 muscle, are discussed.


International Journal of Molecular Sciences | 2012

Fragment C of Tetanus Toxin: New Insights into Its Neuronal Signaling Pathway

Ana Cristina Calvo; Sara Oliván; Raquel Manzano; Pilar Zaragoza; José Aguilera; Rosario Osta

When Clostridium tetani was discovered and identified as a Gram-positive anaerobic bacterium of the genus Clostridium, the possibility of turning its toxin into a valuable biological carrier to ameliorate neurodegenerative processes was inconceivable. However, the non-toxic carboxy-terminal fragment of the tetanus toxin heavy chain (fragment C) can be retrogradely transported to the central nervous system; therefore, fragment C has been used as a valuable biological carrier of neurotrophic factors to ameliorate neurodegenerative processes. More recently, the neuroprotective properties of fragment C have also been described in vitro and in vivo, involving the activation of Akt kinase and extracellular signal-regulated kinase (ERK) signaling cascades through neurotrophin tyrosine kinase (Trk) receptors. Although the precise mechanism of the molecular internalization of fragment C in neuronal cells remains unknown, fragment C could be internalized and translocated into the neuronal cytosol through a clathrin-mediated pathway dependent on proteins, such as dynamin and AP-2. In this review, the origins, molecular properties and possible signaling pathways of fragment C are reviewed to understand the biochemical characteristics of its intracellular and synaptic transport.


Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology | 1999

Synaptic neurone activity under applied 50 Hz alternating magnetic fields.

Ana Cristina Calvo; María J. Azanza

The effect of 50 Hz alternating magnetic fields of 10-150 Gauss (1-15 mT) intensity on neurone synaptic activity for glutamate and acetylcholine has been studied. The applied 50 Hz alternating magnetic field does not modify the synaptic activity induced by glutamate or acetylcholine on neurones. It has been observed that both caffeine and glutamate induce similar effects, either stimulation or inhibition, on different neurone types. It is shown that applied 50 Hz alternating magnetic fields mimic the synaptic effect of glutamate. A mimic effect has also been observed between the induced effect by applying 50 Hz alternating magnetic field on neurones and the one induced by caffeine and glutamate on the same neurone. The application of Ringer solutions with different concentrations of Ca2+/K+ ions suggest that Ca2+ ions are involved in the elicited responses to either caffeine, glutamate or 50 Hz magnetic fields. Our conclusion is that the observed mimic induced effects for 50 Hz alternating magnetic fields, caffeine and glutamate on neurones corroborate that Ca2+ ions are the cytosolic effectors of the applied 50 Hz alternating magnetic fields interaction with neurone plasma membrane.


Journal of Cellular Biochemistry | 2011

Sex, fiber‐type, and age dependent in vitro proliferation of mouse muscle satellite cells

Raquel Manzano; Janne M. Toivonen; Ana Cristina Calvo; Francisco Javier Miana-Mena; Pilar Zaragoza; María Jesús Muñoz; Didier Montarras; Rosario Osta

During postnatal growth and after muscle injury, satellite cells proliferate and differentiate into myotubes to form and repair musculature. Comparison of studies on satellite cell proliferation and differentiation characteristics is confounded by the heterogeneity of the experimental conditions used. To examine the influence of sex, age, and fiber‐type origin on in vitro properties of satellite cells derived from postnatal muscles, fast extensor digitorum longus (EDL) and slow soleus (SOL) muscles were extracted from male and female mice of 1 week to 3 months of age. Myoblast proliferation and myogenic regulatory factor (MRF) expression was measured from cultures of freshly isolated satellite cells. Higher proliferation rate and elevated Myod1 expression was found in male EDL and SOL derived cells compared with females at age of 40, 60, and 120 days, whereas inverse tendency for cell proliferation was apparent in EDL of juvenile (7‐day‐old) pups. Myogenin and Mrf4 transcripts were generally elevated in males of 40 and 60 days of age and in female EDL of juveniles. However, these differentiation markers did not significantly correlate with proliferation rate at all ages. Pax7, whose overexpression can block myogenesis, was up‐regulated especially in 40‐day‐old females where MRF expression was low. These results indicate that gender, postnatal age, and muscle fiber origin affect proliferation and muscle transcription factor expression in vitro. The results also support the view that satellite cells originating from slow and fast muscles are intrinsically different and warrant further studies on the effect of cell origin for therapeutic approaches. J. Cell. Biochem. 112: 2825–2836, 2011.


BioMed Research International | 2014

Amyotrophic Lateral Sclerosis: A Focus on Disease Progression

Ana Cristina Calvo; Raquel Manzano; Deise M. F. Mendonça; María Jesús Muñoz; Pilar Zaragoza; Rosario Osta

Since amyotrophic lateral sclerosis (ALS) was discovered and described in 1869 as a neurodegenerative disease in which motor neuron death is induced, a wide range of biomarkers have been selected to identify therapeutic targets. ALS shares altered molecular pathways with other neurodegenerative diseases, such as Alzheimers, Huntingtons, and Parkinsons diseases. However, the molecular targets that directly influence its aggressive nature remain unknown. What is the first link in the neurodegenerative chain of ALS that makes this disease so peculiar? In this review, we will discuss the progression of the disease from the viewpoint of the potential biomarkers described to date in human and animal model samples. Finally, we will consider potential therapeutic strategies for ALS treatment and future, innovative perspectives.


Restorative Neurology and Neuroscience | 2012

Non-viral gene delivery of the GDNF, either alone or fused to the C-fragment of tetanus toxin protein, prolongs survival in a mouse ALS model

María Moreno-Igoa; Ana Cristina Calvo; Jesús Ciriza; María Jesús Muñoz; Pilar Zaragoza; Rosario Osta

PURPOSE AND BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease with no effective therapy. Glial-cell line derived neurotrophic factor (GDNF) has been translated to clinical trials for treatment of ALS and its selective delivery to the motoneurons could improve its therapeutic abilities. METHODS To test this idea, we genetically fused GDNF to the C-fragment of tetanus toxin (TTC), a peptide able to specifically deliver molecules to motoneurons. RESULTS Single intramuscular administration of naked-DNA encoding GDNF or GDNF-TTC significantly delayed the onset of symptoms and functional deficits into the SODG93A mouse model of ALS, prolonging their lifespan. CONCLUSIONS We have demonstrated a neuroprotective effect of GDNF-TTC as shown by the activation of survival pathways and inhibition of apoptotic proteins, such as Akt phosphorylation, or reduced caspase-3 activation respectively. However, the GDNF fusion with TTC did not improve the therapeutic effects when compared to GDNF alone.

Collaboration


Dive into the Ana Cristina Calvo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amaya Rando

University of Zaragoza

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge