Rosario Osta
University of Zaragoza
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosario Osta.
Amyotrophic Lateral Sclerosis | 2005
Francisco Javier Miana-Mena; María Jesús Muñoz; Gema Yagüe; Mario Mendez; Maria Moreno; Jesús Ciriza; Pilar Zaragoza; Rosario Osta
In the present study, we used the SOD1 (G93A) mutant transgenic mice as a model of amyotrophic lateral sclerosis (ALS). This model is widely used as a laboratory tool to study experimental treatments in vivo for ALS to investigate new therapeutic strategies for this neurodegenerative disease. Such studies require the objective quantification of different parameters while mice develop the disease. We have applied a battery of different and specific tests: scoring of motor deficits by a trained observer, weighing, survival measure, hanging wire test, rotarod task and electromyography, most of them commonly used to evaluate G93A animals. We have critically compared these methods, showing the significant influence of gender on the onset of symptoms, and the optimal moment to apply each test. These results should be taken into account in future therapeutic assays on this ALS model.
PLOS ONE | 2014
Janne M. Toivonen; Raquel Manzano; Sara Oliván; Pilar Zaragoza; Alberto García-Redondo; Rosario Osta
Amyotrophic lateral sclerosis (ALS) is a lethal motor neuron disease that progressively debilitates neuronal cells that control voluntary muscle activity. Biomarkers are urgently needed to facilitate ALS diagnosis and prognosis, and as indicators of therapeutic response in clinical trials. microRNAs (miRNAs), small posttranscriptional modifiers of gene expression, are frequently altered in disease conditions. Besides their important regulatory role in variety of biological processes, miRNAs can also be released into the circulation by pathologically affected tissues and display remarkable stability in body fluids. In a mouse model of ALS that expresses mutated human superoxide dismutase 1 (SOD1-G93A) skeletal muscle is one of the tissues affected early by mutant SOD1 toxicity. To find biomarkers for ALS, we studied miRNA alterations from skeletal muscle and plasma of SOD1-G93A mice, and subsequently tested the levels of the affected miRNAs in the serum from human ALS patients. Fast-twitch and slow-twitch muscles from symptomatic SOD1-G93A mice (age 90 days) and their control littermates were first studied using miRNA microarrays and then evaluated with quantitative PCR from five age groups from neonatal to the terminal disease stage (10–120 days). Among those miRNA changed in various age/gender/muscle groups (miR-206, -1, -133a, -133b, -145, -21, -24), miR-206 was the only one consistently altered during the course of the disease pathology. In both sexes, mature miR-206 was increased in fast-twitch muscles preferably affected in the SOD1-G93A model, with highest expression towards the most severely affected animals. Importantly, miR-206 was also increased in the circulation of symptomatic animals and in a group of 12 definite ALS patients tested. We conclude that miR-206 is elevated in the circulation of symptomatic SOD1-G93A mice and possibly in human ALS patients. Although larger scale studies on ALS patients are warranted, miR-206 is a promising candidate biomarker for this motor neuron disease.
Equine Veterinary Journal | 2012
B. Ranera; L. Ordovás; Jaber Lyahyai; Maria Luisa Bernal; F. Fernandes; Ana Rosa Remacha; Antonio Romero; F.J. Vázquez; Rosario Osta; C. Cons; L. Varona; Pilar Zaragoza; Inmaculada Martín-Burriel; C. Rodellar
REASONS FOR PERFORMING STUDY Mesenchymal stromal cells (MSCs) represent an attractive source for regenerative medicine. However, prior to their application, fundamental questions regarding molecular characterisation, growth and differentiation of MSCs must be resolved. OBJECTIVES To compare and better understand the behaviour of equine MSCs obtained from bone marrow (BM) and adipose tissue (AT) in culture. METHODS Five horses were included in this study. Proliferation rate was measured using MTT assay and cell viability; apoptosis, necrosis and late apoptosis and necrosis were evaluated by flow cytometry. The mRNA expression levels of 7 surface marker genes were quantified using RT-qPCR and CD90 was also analysed by flow cytometry. Differentiation was evaluated using specific staining, measurement of alkaline phosphatase activity and analysis of the mRNA expression. RESULTS High interindividual differences were observed in proliferation in both cell types, particularly during the final days. Statistically significant differences in viability and early apoptosis of cultured AT- and BM-MSCs were found. The highest values of early apoptosis were observed during the first days of culture, while the highest percentage of necrosis and late apoptosis and lowest viability was observed in the last days. Surface marker expression pattern observed is in accordance to other studies in horse and other species. Osteogenic differentiation was evident after 7 days, with an increasing of ALP activity and mRNA expression of osteogenic markers. Adipogenic differentiation was achieved in BM-MSCs from 2 donors with one of the 16 media tested. Chondrogenic differentiation was also observed. CONCLUSIONS Proliferation ability is different in AT-MSCs and BM-MSCs. Differences in viability and early apoptosis were observed between both sources and CD34 was only found in AT-MSCs. Differences in their osteogenic and adipogenic potential were detected by staining and quantification of specific tissue markers. POTENTIAL RELEVANCE To provide data to better understand AT-MSCs and BM-MSCs behaviour in vitro.
Brain Pathology | 2011
Carmen R. Sunico; Germán Domínguez; Jose Manuel Garcia-Verdugo; Rosario Osta; Fernando Montero; Bernardo Moreno-López
Excitotoxicity is a widely studied mechanism underlying motoneuron degeneration in amyotrophic lateral sclerosis (ALS). Synaptic alterations that produce an imbalance in the ratio of inhibitory/excitatory synapses are expected to promote or protect against motoneuron excitotoxicity. In ALS patients, motoneurons suffer a reduction in their synaptic coverage, as in the transition from the presymptomatic (2‐month‐old) to early‐symptomatic (3‐month‐old) stage of the hSOD1G93A mouse model of familial ALS. Net synapse loss resulted from inhibitory bouton loss and excitatory synapse gain. Furthermore, in 3‐month‐old transgenic mice, remaining inhibitory but not excitatory boutons attached to motoneurons showed reduction in the active zone length and in the spatial density of synaptic vesicles in the releasable pool near the active zone. Bouton degeneration/loss seems to be mediated by bouton vacuolization and by mechanical displacement due to swelling vacuolated dendrites. In addition, chronic treatment with a nitric oxide (NO) synthase inhibitor avoided inhibitory loss but not excitatory gain. These results indicate that NO mediates inhibitory loss occurring from the pre‐ to early‐symptomatic stage of hSOD1G93A mice. This work contributes new insights on ALS pathogenesis, recognizing synaptic re‐arrangement onto motoneurons as a mechanism favoring disease progression rather than as a protective homeostatic response against excitotoxic events.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Francisco Javier Miana-Mena; Sylvie Roux; Jean-Claude Benichou; Rosario Osta; Philippe Brulet
During development and also in adulthood, synaptic connections are modulated by neuronal activity. To follow such modifications in vivo, new genetic tools are designed. The nontoxic C-terminal fragment of tetanus toxin (TTC) fused to a reporter gene such as LacZ retains the retrograde and transsynaptic transport abilities of the holotoxin itself. In this work, the hybrid protein is injected intramuscularly to analyze in vivo the mechanisms of intracellular and transneuronal traffics at the neuromuscular junction (NMJ). Traffic on both sides of the synapse are strongly dependent on presynaptic neural cell activity. In muscle, a directional membrane traffic concentrates β-galactosidase-TTC hybrid protein into the NMJ postsynaptic side. In neurons, the probe is sorted across the cell to dendrites and subsequently to an interconnected neuron. Such fusion protein, sensitive to presynaptic neuronal activity, would be extremely useful to analyze morphological changes and plasticity at the NMJ.
Brain and behavior | 2013
Caty Casas; Mireia Herrando-Grabulosa; Raquel Manzano; Renzo Mancuso; Rosario Osta; Xavier Navarro
Sporadic and familiar amyotrophic lateral sclerosis (ALS) cases presented lower cholinergic activity than in healthy individuals in their still preserved spinal motoneurons (MNs) suggesting that cholinergic reduction might occur before MN death. To unravel how and when cholinergic function is compromised, we have analyzed the spatiotemporal expression of choline acetyltransferase (ChAT) from early presymptomatic stages of the SOD1G93A ALS mouse model by confocal immunohistochemistry. The analysis showed an early reduction in ChAT content in soma and presynaptic boutons apposed onto MNs (to 76%) as well as in cholinergic interneurons in the lumbar spinal cord of the 30‐day‐old SOD1G93A mice. Cholinergic synaptic stripping occurred simultaneously to the presence of abundant surrounding major histocompatibility complex II (MHC‐II)‐positive microglia and the accumulation of nuclear Tdp‐43 and the appearance of mild oxidative stress within MNs. Besides, there was a loss of neuronal MHC‐I expression, which is necessary for balanced synaptic stripping after axotomy. These events occurred before the selective raise of markers of denervation such as ATF3. By the same time, alterations in postsynaptic cholinergic‐related structures were also revealed with a loss of the presence of sigma‐1 receptor, a Ca2+ buffering chaperone in the postsynaptic cisternae. By 2 months of age, ChAT seemed to accumulate in the soma of MNs, and thus efferences toward Renshaw interneurons were drastically diminished. In conclusion, cholinergic dysfunction in the local circuitry of the spinal cord may be one of the earliest events in ALS etiopathogenesis.
Clinical Neurophysiology | 2011
Renzo Mancuso; Eva Santos-Nogueira; Rosario Osta; Xavier Navarro
OBJECTIVE Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of motoneurons of the primary motor cortex, the brainstem and the spinal cord, for which there are not effective treatments. Several transgenic mice that mimic motoneuron disease have been used to investigate potential treatments. The objective of this work is to characterize electrophysiologically the SOD1(G93A) transgenic mouse model of ALS, and to provide useful markers to improve early detection and monitoring of progression of the disease. METHODS We performed nerve conduction tests, motor unit number estimation (MUNE), H reflex tests and motor evoked potentials (MEPs) in a cohort of transgenic and wild type mice from 4 to 16 weeks of age. RESULTS The results revealed dysfunction of spinal motoneurons evidenced by deficits in motor nerve conduction tests starting at 8 weeks of age, earlier in proximal than in distal muscles of the hindlimb. MUNE demonstrated that spinal motoneurons loss muscle innervation and have a deficit in their sprouting capacity. Motor evoked potentials revealed that, coexisting with peripheral deficits, there was a dysfunction of central motor tracts that started also at 8 weeks, indicating progressive dysfunction of upper motoneurons. CONCLUSIONS These electrophysiological results provide important information about the SOD1(G93A) mouse model, as they demonstrate by the first time alterations of central motor pathways simultaneously to lower motoneuron dysfunction, well before functional abnormalities appear (by 12 weeks of age). SIGNIFICANCE The finding of concomitant dysfunction of upper and lower motoneurons contributes to the validation of the SOD1(G93A) mouse as model of ALS, because this parallel involvement is a diagnostic condition for ALS. Electrophysiological tests can be used as early markers of the disease and to evaluate the potential benefits of new treatments on both upper and lower motoneurons.
PLOS ONE | 2012
Ana Cristina Calvo; Raquel Manzano; Gabriela Atencia-Cibreiro; Sara Oliván; María Jesús Muñoz; Pilar Zaragoza; Pilar Cordero-vázquez; Jesús Esteban-Pérez; Alberto García-Redondo; Rosario Osta
The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS) are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturers protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10) could be considered potential genetic biomarkers of longevity in transgenic SOD1G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.
Orphanet Journal of Rare Diseases | 2011
Ana Cristina Calvo; María Moreno-Igoa; Renzo Mancuso; Raquel Manzano; Sara Oliván; María Jesús Muñoz; Clara Penas; Pilar Zaragoza; Xavier Navarro; Rosario Osta
BackgroundAmyotrophic lateral sclerosis (ALS) is one of the most devastating neurodegenerative diseases. Neurotrophic factors have been widely tested to counteract neurodegenerative conditions, despite their unspecific neuronal access. The non-toxic C-terminal fragment of the tetanus toxin (TTC) heavy chain has been studied not only as a carrier molecule to the CNS but also as a neuroprotective agent. Because the neurotrophic effects of BDNF have been demonstrated in vitro and in vivo, the question addressed in this work is whether a fusion molecule of BDNF-TTC may have a synergistic effect and enhance the neuroprotective properties of TTC alone in a mouse model of ALS.MethodsRecombinant plasmid constructs (pCMV-TTC and pCMV-BDNF-TTC) were injected into the quadriceps femoris and triceps brachialis muscles of SOD1G93A transgenic mice at 8 weeks of age. The hanging wire and rotarod tests were performed to assess motor coordination, strength and balance. Electrophysiological tests, morphological assays of spinal cord sections of L2 and L4 segments, and gene and protein expression analyses were performed. The Kaplan-Meier survival analysis test was used for comparisons of survival. Multiple comparisons of data were analyzed using a one-way analysis of variance (ANOVA).ResultsTreatment with the fusion-molecule BDNF-TTC and with TTC alone significantly delayed the onset of symptoms and functional deficits of SOD1G93A mice. Muscle innervation was partially preserved with these treatments, and the number of surviving motoneurons in L2 spinal cord segment was increased particularly by the fusion protein induction. Inhibition of pro-apoptotic protein targets (caspase-3 and Bax) and significant phosphorylation of Akt and ERK were also found in the spinal cord of treated mice.ConclusionsSignificant improvements in behavioral and electrophysiological results, motoneuron survival and anti-apoptotic/survival-activated pathways were observed with BDNF-TTC treatment. However, no synergistic effect was found for this fusion molecule. Although BDNF in the fusion molecule is capable of activating autocrine and neuroprotective pathways, TTC treatment alone yielded similar neuroprotection. Therefore, an accurate study of the neuroprotective effects of TTC fusion molecules should be performed to obtain a better understanding of its effects.
Neurodegenerative Diseases | 2011
Raquel Manzano; Janne M. Toivonen; Sara Oliván; Ana Cristina Calvo; María Moreno-Igoa; María Jesús Muñoz; Pilar Zaragoza; Alberto García-Redondo; Rosario Osta
Background: In the superoxide dismutase 1 (SOD1)-G93A mouse model of amyotrophic lateral sclerosis (ALS), skeletal muscle is a key target of mutant SOD1 toxicity. However, the expression of factors that control the regenerative potential of the muscle is unknown in this model. Objective: To characterize the expression of satellite cell marker Pax7 and myogenic regulatory factors (MRF) in skeletal muscle of SOD1-G93A mice at different stages of the disease. Methods: The expressions of Pax7, Myod1, Myf5 and myogenin (Myog) were determined by quantitative real-time PCR and by Western blotting from the grouped gastrocnemius, quadriceps and soleus muscles of SOD1-G93A mice at presymptomatic, symptomatic and terminal stages of the disease, and from surgically denervated wild-type gastrocnemius muscles. Results:Pax7 mRNA and MYF5 protein were upregulated in presymptomatic mice, coinciding with increased muscle damage marker Rrad and chemokine Ccl5. All MRF transcripts and most proteins (excluding MYOG) were increased, starting from 3 months of age, simultaneously with increased expression of denervation marker Chrna1. However, in the terminal stage, no protein increase was evident for Pax7 or any of the MRF despite the increased mRNA levels. The transcripts for chemokine Ccl2 and chemokine receptor Cxcr4 were increased starting from the onset of symptoms. Conclusions: The characterization of Pax7 and MRF in SOD1-G93A mice reveals a progressive induction of the myogenic program at the RNA level, but a blunted protein level response at late stages of the disease. Altered posttranscriptional and posttranslational mechanisms likely to operate, as well as the potential role of chemokine signaling in mutant SOD1 muscle, are discussed.