Ana do Vale
Instituto de Biologia Molecular e Celular
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana do Vale.
Apoptosis | 2008
Manuel T. Silva; Ana do Vale; Nuno M. N. dos Santos
In metazoans apoptosis is a major physiological process of cell elimination during development and in tissue homeostasis and can be involved in pathological situations. In vitro, apoptosis proceeds through an execution phase during which cell dismantling is initiated, with or without fragmentation into apoptotic bodies, but with maintenance of a near-to-intact cytoplasmic membrane, followed by a transition to a necrotic cell elimination traditionally called “secondary necrosis”. Secondary necrosis involves activation of self-hydrolytic enzymes, and swelling of the cell or of the apoptotic bodies, generalized and irreparable damage to the cytoplasmic membrane, and culminates with cell disruption. In vivo, under normal conditions, the elimination of apoptosing cells or apoptotic bodies is by removal through engulfment by scavengers prompted by the exposure of engulfment signals during the execution phase of apoptosis; if this removal fails progression to secondary necrosis ensues as in the in vitro situation. In vivo secondary necrosis occurs when massive apoptosis overwhelms the available scavenging capacity, or when the scavenger mechanism is directly impaired, and may result in leakage of the cell contents with induction of tissue injury and inflammatory and autoimmune responses. Several disorders where secondary necrosis has been implicated as a pathogenic mechanism will be reviewed.
Molecular Microbiology | 2005
Ana do Vale; Manuel T. Silva; Nuno M.S. dos Santos; Diana S. Nascimento; Pedro Reis-Rodrigues; Carolina Costa-Ramos; Anthony E. Ellis; Jorge E. Azevedo
A strategy used by extracellular pathogens to evade phagocytosis is the utilization of exotoxins that kill host phagocytes. We have recently shown that one major pathogenicity strategy of Photobacterium damselae subsp. piscicida (Phdp), the agent of the widespread fish pasteurellosis, is the induction of extensive apoptosis of sea bass macrophages and neutrophils that results in lysis of these phagocytes by post‐apoptotic secondary necrosis. Here we show that this unique process is mediated by a novel plasmid‐encoded apoptosis inducing protein of 56 kDa (AIP56), an exotoxin abundantly secreted by all virulent, but not avirulent, Phdp strains tested. AIP56 is related to an unknown protein of the enterohemorrhagic Escherichia coli O157:H7 and NleC, a Citrobacter rodentium type III secreted effector of unknown function. Passive immunization of sea bass with a rabbit anti‐AIP56 serum conferred protection against Phdp challenge, indicating that AIP56 represents a key virulence factor of that pathogen and is a candidate for the design of an anti‐pasteurellosis vaccine.
Fish & Shellfish Immunology | 2003
Ana do Vale; Fernanda Marques; Manuel T. Silva
The infection of sea bass (Dicentrarchus labrax L.) by intraperitoneal (i.p.) injection of the agent of fish pasteurellosis Photobacterium damselae subsp. piscicida resulted in the apoptosis of peritoneal neutrophils and macrophages. All the eight virulent and none of the two non-virulent strains tested exhibited apoptogenic activity. A secreted bacterial protein(s) is a likely candidate as the factor(s) responsible for this activity, since no apoptosis was induced by i.p. injected UV-killed virulent strains and the virulent culture supernatants exhibited a thermo-labile apoptogenic activity identical to that of live bacteria. The apoptotic process was characterized by the occurrence of DNA fragmentation detected by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining and DNA electrophoresis, and of typical ultrastructural alterations namely cell shrinkage, chromatin condensation, nuclear fragmentation and production of blebs with shedding of apoptotic bodies. In the apoptotic process induced by lethal doses of virulent bacteria or culture supernatants both peritoneal macrophages and neutrophils were extensively affected, the majority of these cells being apoptotic and reaching values around 10(7)per peritoneal cavity for each cell type at 24h post-injection. Moreover, the number of non-apoptotic macrophages was always below the initial number in the resting peritoneal cavity. Since macrophages are key cells in the elimination of both bacteria and apoptotic moribund cells and apoptotic bodies, the induction by Ph. damselae subsp. piscicida of simultaneous macrophage and neutrophil apoptosis results, on the one hand, in the destruction of the two phagocytic cell types involved in the restriction of multiplication of the bacteria and, on the other hand, in the uncontrolled progression of the apoptotic process towards secondary necrosis and eventual lysis of high numbers of moribund neutrophils and of neutrophilic apoptotic bodies, with the consequent extensive release of their highly cytotoxic components. Abundant apoptotic cells were also seen in sections of head-kidney from fish dying from experimental pasteurellosis. In contrast, no apoptosis was seen in vitro after the treatment with virulent culture supernatants of sea bass head-kidney macrophage cultures or after the treatment ex vivo of peritoneal exudate leukocytes with virulent bacteria or culture supernatants. The apoptotic process described here appears as a novel and very powerful microbial pathogenic strategy.
Cellular Microbiology | 2007
Ana do Vale; Carolina Costa-Ramos; Alexandra Silva; Daniela S.P. Silva; Fátima Gärtner; Nuno M.S. dos Santos; Manuel T. Silva
Bacterial modulation of phagocyte cell death is an emerging theme in pathogenesis. Here we describe the systemic destruction of macrophages and neutrophils by the Gram‐negative Photobacterium damselae ssp. piscicida (Phdp) in fish pasteurellosis, a deadly systemic infection. Following experimental inoculation, Phdp spreads by bacteraemia and colonizes the organs, producing a septicaemic infection, and secretes the apoptogenic exotoxin AIP56 which is systemically disseminated. In experimental and natural pasteurellosis, destruction of macrophages and neutrophils by secondary necrosis following caspase‐3‐associated apoptosis was seen predominantly in the spleen, head kidney and gut lamina propria. Identical phagocyte destruction occurred after injection of rAIP56, but not of heat‐inactivated rAIP56, or AIP56‐negative Phdp strains, indicating that AIP56 is responsible for phagocyte destruction occurring in pasteurellosis. Active caspase‐3 and active neutrophil elastase are present in the blood in advanced infection, indicating that phagocyte lysis by secondary necrosis is accompanied by release of tissue‐damaging molecules. The AIP56‐induced lysis of phagocytes represents a very efficient, self‐amplifying etiopathogenic mechanism, because it results in two effects that operate in concert against the host, namely, evasion of the pathogen from a crucial defence mechanism through the destruction of both professional phagocytes, and release of tissue‐damaging molecules. The induction by a bacterial exotoxin of in vivo systemic lysis of both professional phagocytes by secondary necrosis, now described for the first time, may represent an overlooked etiopathogenic mechanism operating in other infections of vertebrates.
PLOS ONE | 2012
Marta Reis; Ana do Vale; Pedro José Barbosa Pereira; Jorge E. Azevedo; Nuno M.S. dos Santos
Interleukine-1β (IL-1β) is the most studied pro-inflammatory cytokine, playing a central role in the generation of systemic and local responses to infection, injury, and immunological challenges. In mammals, IL-1β is synthesized as an inactive 31 kDa precursor that is cleaved by caspase-1 generating a 17.5 kDa secreted active mature form. The caspase-1 cleavage site strictly conserved in all mammalian IL-1β sequences is absent in IL-1β sequences reported for non-mammalian vertebrates. Recently, fish caspase-1 orthologues have been identified in sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) but very little is known regarding their processing and activity. In this work it is shown that sea bass caspase-1 auto-processing is similar to that of the human enzyme, resulting in active p24/p10 and p20/p10 heterodimers. Moreover, the presence of alternatively spliced variants of caspase-1 in sea bass is reported. The existence of caspase-1 isoforms in fish and in mammals suggests that they have been evolutionarily maintained and therefore are likely to play a regulatory role in the inflammatory response, as shown for other caspases. Finally, it is shown that sea bass and avian IL-1β are specifically cleaved by caspase-1 at different but phylogenetically conserved aspartates, distinct from the cleavage site of mammalian IL-1β.
PLOS Pathogens | 2013
Daniela S. Silva; Liliana M. G. Pereira; Ana R. Moreira; Frederico Ferreira-da-Silva; Rui M. M. Brito; Tiago Q. Faria; Irene Zornetta; Cesare Montecucco; Pedro Oliveira; Jorge E. Azevedo; Pedro José Barbosa Pereira; Sandra Macedo-Ribeiro; Ana do Vale; Nuno M.S. dos Santos
AIP56 (apoptosis-inducing protein of 56 kDa) is a major virulence factor of Photobacterium damselae piscicida (Phdp), a Gram-negative pathogen that causes septicemic infections, which are among the most threatening diseases in mariculture. The toxin triggers apoptosis of host macrophages and neutrophils through a process that, in vivo, culminates with secondary necrosis of the apoptotic cells contributing to the necrotic lesions observed in the diseased animals. Here, we show that AIP56 is a NF-κB p65-cleaving zinc-metalloprotease whose catalytic activity is required for the apoptogenic effect. Most of the bacterial effectors known to target NF-κB are type III secreted effectors. In contrast, we demonstrate that AIP56 is an A-B toxin capable of acting at distance, without requiring contact of the bacteria with the target cell. We also show that the N-terminal domain cleaves NF-κB at the Cys39-Glu40 peptide bond and that the C-terminal domain is involved in binding and internalization into the cytosol.
Fish & Shellfish Immunology | 2011
Carolina Costa-Ramos; Ana do Vale; Paula Ludovico; Nuno M.S. dos Santos; Manuel T. Silva
It has been previously shown that the exotoxin of the important fish pathogen Photobacterium damselae ssp. piscicida is a key pathogenicity factor and is responsible for the extensive systemic apoptosis of macrophages and neutrophils seen in acute fish photobacteriosis. The focus of the present study was to further characterize the AIP56-induced apoptosis of sea bass professional phagocytes by assessing the involvement of caspases, mitochondria and oxidative stress. The resulting data indicate that the apoptotic response in peritoneal macrophages and neutrophils treated ex vivo with AIP56 involves activation of caspase-8, -9 and -3, and mitochondria as shown by loss of mitochondrial membrane potential, release of cytochrome c and over-production of ROS. These results together with previous data from this laboratory suggest that both the extrinsic and intrinsic apoptotic pathways are involved in the AIP56-induced phagocyte apoptosis.
Fish & Shellfish Immunology | 2010
Marta I.R. Reis; Carolina Costa-Ramos; Ana do Vale; Nuno M.S. dos Santos
Caspase-8 is an initiator caspase that plays a crucial role in some cases of apoptosis by extrinsic and intrinsic pathways. Caspase-8 structure and function have been extensively studied in mammals, but in fish the characterization of that initiator caspase is still scarce. In this work, the sea bass counterpart of mammalian caspase-8 was sequenced and characterized, and its involvement in the apoptogenic activity of a toxin from a fish pathogen was assessed. A 2472 bp cDNA of sea bass caspase-8 was obtained, consisting of 1455 bp open reading frame coding for 484 amino acids and with a predicted molecular weight of 55.2 kDa. The sea bass caspase-8 gene has 6639 bp and is organized in 11 introns and 12 exons. Several distinctive features of sea bass caspase-8 were identified, which include two death effector domains, the caspase family domains p20 and p10, the caspase-8 active-site pentapeptide and potential aspartic acid cleavage sites. The sea bass caspase-8 sequence revealed a significant degree of similarity to corresponding sequences from several vertebrate taxonomic groups. A low expression of sea bass caspase-8 was detected in various tissues of non-stimulated sea bass. Furthermore, it is shown that stimulation of sea bass with mid-exponential phase culture supernatants from Photobacterium damselae ssp. piscicida (Phdp), known to induce selective apoptosis of macrophages and neutrophils, resulted in an increased expression of caspase-8 in the spleen, one of the main affected organs by Phdp infection.
Frontiers in Microbiology | 2016
Ana do Vale; Didier Cabanes; Sandra Sousa
Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favor microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signaling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.
Apoptosis | 2007
Ana do Vale; Carolina Costa-Ramos; Daniela S.P. Silva; Paula Macedo; Rui Fernandes; Paula Sampaio; Nuno M.S. dos Santos; Manuel T. Silva
Detachment-induced apoptosis of enterocytes (anoikis) has not been investigated in vivo. Here we describe anoikis of fish enterocytes following detachment in a septicemia by Photobacterium damselae subsp. piscicida, or following injection of its exotoxin. The in vivo study was complemented with an ex vivo time-lapse analysis using conditions duplicating the in vivo situation. Linings of enterocytes detached from intestine mucosa dissociate into isolated enterocytes which undergo caspase 3-mediated anoikis with cell rounding, loss of polarization, condensation of chromatin and fragmentation of the nuclear envelope, early swelling of mitochondria with rupture of the outer membrane, and brush border disappearance. One mechanism for brush border loss was shedding of apoptotic bodies incorporating the apical part of the enterocyte. Brush border disappearance was also associated with disassembly of the F-actin microvillar core and involved re-absorption into the cell, or expansion and vesiculation followed by shedding of microvillar fragments. The enterocyte anoikis terminates by secondary necrosis and lysis due to lack of elimination by phagocytosis of apoptosing enterocytes. The conditions prevailing in vivo in the gut lumen accelerate enterocyte secondary necrosis. Our results underscore the importance of analyzing anoikis under conditions similar to those occurring in vivo.