Ana Fernandez-Bustamante
University of Colorado Denver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Fernandez-Bustamante.
Anesthesiology | 2013
Sachin Kheterpal; David W. Healy; Michael F. Aziz; Amy Shanks; Robert E. Freundlich; Fiona Linton; Lizabeth D. Martin; Jonathan Linton; Jerry L. Epps; Ana Fernandez-Bustamante; Leslie C. Jameson; Tyler Tremper; Kevin K. Tremper
Background:Research regarding difficult mask ventilation (DMV) combined with difficult laryngoscopy (DL) is extremely limited even though each technique serves as a rescue for one another. Methods:Four tertiary care centers participating in the Multicenter Perioperative Outcomes Group used a consistent structured patient history and airway examination and airway outcome definition. DMV was defined as grade 3 or 4 mask ventilation, and DL was defined as grade 3 or 4 laryngoscopic view or four or more intubation attempts. The primary outcome was DMV combined with DL. Patients with the primary outcome were compared to those without the primary outcome to identify predictors of DMV combined with DL using a non-parsimonious logistic regression. Results:Of 492,239 cases performed at four institutions among adult patients, 176,679 included a documented face mask ventilation and laryngoscopy attempt. Six hundred ninety-eight patients experienced the primary outcome, an overall incidence of 0.40%. One patient required an emergent cricothyrotomy, 177 were intubated using direct laryngoscopy, 284 using direct laryngoscopy with bougie introducer, 163 using videolaryngoscopy, and 73 using other techniques. Independent predictors of the primary outcome included age 46 yr or more, body mass index 30 or more, male sex, Mallampati III or IV, neck mass or radiation, limited thyromental distance, sleep apnea, presence of teeth, beard, thick neck, limited cervical spine mobility, and limited jaw protrusion (c-statistic 0.84 [95% CI, 0.82–0.87]). Conclusion:DMV combined with DL is an infrequent but not rare phenomenon. Most patients can be managed with the use of direct or videolaryngoscopy. An easy to use unweighted risk scale has robust discriminating capacity.
Anesthesiology | 2015
Ary Serpa Neto; Sabrine N. T. Hemmes; Carmen Silvia Valente Barbas; Martin Beiderlinden; Michelle Biehl; Jan M. Binnekade; Jaume Canet; Ana Fernandez-Bustamante; Emmanuel Futier; Ognjen Gajic; Göran Hedenstierna; Markus W. Hollmann; Samir Jaber; Alf Kozian; Marc Licker; Wen Qian Lin; Andrew Maslow; Stavros G. Memtsoudis; Dinis Reis Miranda; Pierre Moine; Thomas Ng; Domenico Paparella; Christian Putensen; Marco Ranieri; Federica Scavonetto; Thomas F. Schilling; Werner Schmid; Gabriele Selmo; Paolo Severgnini; Juraj Sprung
Background:Recent studies show that intraoperative mechanical ventilation using low tidal volumes (VT) can prevent postoperative pulmonary complications (PPCs). The aim of this individual patient data meta-analysis is to evaluate the individual associations between VT size and positive end–expiratory pressure (PEEP) level and occurrence of PPC. Methods:Randomized controlled trials comparing protective ventilation (low VT with or without high levels of PEEP) and conventional ventilation (high VT with low PEEP) in patients undergoing general surgery. The primary outcome was development of PPC. Predefined prognostic factors were tested using multivariate logistic regression. Results:Fifteen randomized controlled trials were included (2,127 patients). There were 97 cases of PPC in 1,118 patients (8.7%) assigned to protective ventilation and 148 cases in 1,009 patients (14.7%) assigned to conventional ventilation (adjusted relative risk, 0.64; 95% CI, 0.46 to 0.88; P < 0.01). There were 85 cases of PPC in 957 patients (8.9%) assigned to ventilation with low VT and high PEEP levels and 63 cases in 525 patients (12%) assigned to ventilation with low VT and low PEEP levels (adjusted relative risk, 0.93; 95% CI, 0.64 to 1.37; P = 0.72). A dose–response relationship was found between the appearance of PPC and VT size (R2 = 0.39) but not between the appearance of PPC and PEEP level (R2 = 0.08). Conclusions:These data support the beneficial effects of ventilation with use of low VT in patients undergoing surgery. Further trials are necessary to define the role of intraoperative higher PEEP to prevent PPC during nonopen abdominal surgery.
The Lancet Respiratory Medicine | 2016
Ary Serpa Neto; Sabrine N. T. Hemmes; Carmen Silvia Valente Barbas; Martin Beiderlinden; Ana Fernandez-Bustamante; Emmanuel Futier; Ognjen Gajic; Mohamed R. El-Tahan; Abdulmohsin A Al Ghamdi; Ersin Günay; Samir Jaber; Serdar Kokulu; Alf Kozian; Marc Licker; Wen Qian Lin; Andrew Maslow; Stavros G. Memtsoudis; Dinis Reis Miranda; Pierre Moine; Thomas Ng; Domenico Paparella; V. Marco Ranieri; Federica Scavonetto; Thomas F. Schilling; Gabriele Selmo; Paolo Severgnini; Juraj Sprung; Sugantha Sundar; Daniel Talmor; Tanja A. Treschan
BACKGROUND Protective mechanical ventilation strategies using low tidal volume or high levels of positive end-expiratory pressure (PEEP) improve outcomes for patients who have had surgery. The role of the driving pressure, which is the difference between the plateau pressure and the level of positive end-expiratory pressure is not known. We investigated the association of tidal volume, the level of PEEP, and driving pressure during intraoperative ventilation with the development of postoperative pulmonary complications. METHODS We did a meta-analysis of individual patient data from randomised controlled trials of protective ventilation during general anesthaesia for surgery published up to July 30, 2015. The main outcome was development of postoperative pulmonary complications (postoperative lung injury, pulmonary infection, or barotrauma). FINDINGS We included data from 17 randomised controlled trials, including 2250 patients. Multivariate analysis suggested that driving pressure was associated with the development of postoperative pulmonary complications (odds ratio [OR] for one unit increase of driving pressure 1·16, 95% CI 1·13-1·19; p<0·0001), whereas we detected no association for tidal volume (1·05, 0·98-1·13; p=0·179). PEEP did not have a large enough effect in univariate analysis to warrant inclusion in the multivariate analysis. In a mediator analysis, driving pressure was the only significant mediator of the effects of protective ventilation on development of pulmonary complications (p=0·027). In two studies that compared low with high PEEP during low tidal volume ventilation, an increase in the level of PEEP that resulted in an increase in driving pressure was associated with more postoperative pulmonary complications (OR 3·11, 95% CI 1·39-6·96; p=0·006). INTERPRETATION In patients having surgery, intraoperative high driving pressure and changes in the level of PEEP that result in an increase of driving pressure are associated with more postoperative pulmonary complications. However, a randomised controlled trial comparing ventilation based on driving pressure with usual care is needed to confirm these findings. FUNDING None.
Anesthesiology | 2009
R. Blaine Easley; Daniel G. Mulreany; Christopher T. Lancaster; Jason W. Custer; Ana Fernandez-Bustamante; Elizabeth Colantuoni; Brett A. Simon
Background:Studies using transthoracic thermodilution have demonstrated increased extravascular lung water (EVLW) measurements attributed to progression of edema and flooding during sepsis and acute lung injury. The authors hypothesized that redistribution of pulmonary blood flow can cause increased apparent EVLW secondary to increased perfusion of thermally silent tissue, not increased lung edema. Methods:Anesthetized, mechanically ventilated canines were instrumented with PiCCO® (Pulsion Medical, Munich, Germany) catheters and underwent lung injury by repetitive saline lavage. Hemodynamic and respiratory physiologic data were recorded. After stabilized lung injury, endotoxin was administered to inactivate hypoxic pulmonary vasoconstriction. Computed tomographic imaging was performed to quantify in vivo lung volume, total tissue (fluid) and air content, and regional distribution of blood flow. Results:Lavage injury caused an increase in airway pressures and decreased arterial oxygen content with minimal hemodynamic effects. EVLW and shunt fraction increased after injury and then markedly after endotoxin administration. Computed tomographic measurements quantified an endotoxin-induced increase in pulmonary blood flow to poorly aerated regions with no change in total lung tissue volume. Conclusions:The abrupt increase in EVLW and shunt fraction after endotoxin administration is consistent with inactivation of hypoxic pulmonary vasoconstriction and increased perfusion to already flooded lung regions that were previously thermally silent. Computed tomographic studies further demonstrate in vivo alterations in regional blood flow (but not lung water) and account for these alterations in shunt fraction and EVLW.
Anesthesiology | 2014
Ana Fernandez-Bustamante; Jelena Klawitter; John E. Repine; Amanda Agazio; Allison J. Janocha; Chirag P. Shah; Marc Moss; Ivor S. Douglas; Zung Vu Tran; Serpil C. Erzurum; Uwe Christians; Tamas Seres
Background:The early biological impact of short-term mechanical ventilation on healthy lungs is unknown. The authors aimed to characterize the immediate tidal volume (VT)-related changes on lung injury biomarkers in patients with healthy lungs and low risk of pulmonary complications. Methods:Twenty-eight healthy patients for knee replacement surgery were prospectively randomized to volume-controlled ventilation with VT 6 (VT6) or 10 (VT10) ml/kg predicted body weight. General anesthesia and other ventilatory parameters (positive end-expiratory pressure, 5 cm H2O, FIO2, 0.5, respiratory rate titrated for normocapnia) were managed similarly in the two groups. Exhaled breath condensate and blood samples were collected for nitrite, nitrate, tumor necrosis factor-&agr;, interleukins-1&bgr;, -6, -8, -10, -11, neutrophil elastase, and Clara Cell protein 16 measurements, at the onset of ventilation and 60 min later. Results:No significant differences in biomarkers were detected between the VT groups at any time. The coefficient of variation of exhaled breath condensate nitrite and nitrate decreased in the VT6 but increased in the VT10 group after 60-min ventilation. Sixty-minute ventilation significantly increased plasma neutrophil elastase levels in the VT6 (35.2 ± 30.4 vs. 56.4 ± 51.7 ng/ml, P = 0.008) and Clara Cell protein 16 levels in the VT10 group (16.4 ± 8.8 vs. 18.7 ± 9.5 ng/ml, P = 0.015). Exhaled breath condensate nitrite correlated with plateau pressure (r = 0.27, P = 0.042) and plasma neutrophil elastase (r = 0.44, P = 0.001). Plasma Clara Cell protein 16 correlated with compliance (r = 0.34, P = 0.014). Conclusions:No tidal volume-related changes were observed in the selected lung injury biomarkers of patients with healthy lungs after 60-min ventilation. Plasma neutrophil elastase and plasma Clara Cell protein 16 might indicate atelectrauma and lung distention, respectively.
JAMA Surgery | 2017
Ana Fernandez-Bustamante; Gyorgy Frendl; Juraj Sprung; Daryl J. Kor; Bala Subramaniam; Ricardo Martinez Ruiz; Jae-Woo Lee; William G. Henderson; Angela Moss; Nitin Mehdiratta; Megan M. Colwell; Karsten Bartels; Kerstin Kolodzie; Jadelis Giquel; Marcos F. Vidal Melo
Importance Postoperative pulmonary complications (PPCs), a leading cause of poor surgical outcomes, are heterogeneous in their pathophysiology, severity, and reporting accuracy. Objective To prospectively study clinical and radiological PPCs and respiratory insufficiency therapies in a high-risk surgical population. Design, Setting, and Participants We performed a multicenter prospective observational study in 7 US academic institutions. American Society of Anesthesiologists physical status 3 patients who presented for noncardiothoracic surgery requiring 2 hours or more of general anesthesia with mechanical ventilation from May to November 2014 were included in the study. We hypothesized that PPCs, even mild, would be associated with early postoperative mortality and use of hospital resources. We analyzed their association with modifiable perioperative variables. Exposure Noncardiothoracic surgery. Main Outcomes and Measures Predefined PPCs occurring within the first 7 postoperative days were prospectively identified. We used bivariable and logistic regression analyses to study the association of PPCs with ventilatory and other perioperative variables. Results This study included 1202 patients who underwent predominantly abdominal, orthopedic, and neurological procedures. The mean (SD) age of patients was 62.1 (13.8) years, and 636 (52.9%) were men. At least 1 PPC occurred in 401 patients (33.4%), mainly the need for prolonged oxygen therapy by nasal cannula (n = 235; 19.6%) and atelectasis (n = 206; 17.1%). Patients with 1 or more PPCs, even mild, had significantly increased early postoperative mortality, intensive care unit (ICU) admission, and ICU/hospital length of stay. Significant PPC risk factors included nonmodifiable (emergency [yes vs no]: odds ratio [OR], 4.47, 95% CI, 1.59-12.56; surgical site [abdominal/pelvic vs nonabdominal/pelvic]: OR, 2.54, 95% CI, 1.67-3.89; and age [in years]: OR, 1.03, 95% CI, 1.02-1.05) and potentially modifiable (colloid administration [yes vs no]: OR, 1.75, 95% CI, 1.03-2.97; preoperative oxygenation: OR, 0.86, 95% CI, 0.80-0.93; blood loss [in milliliters]: OR, 1.17, 95% CI, 1.05-1.30; anesthesia duration [in minutes]: OR, 1.14, 95% CI, 1.05-1.24; and tidal volume [in milliliters per kilogram of predicted body weight]: OR, 1.12, 95% CI, 1.01-1.24) factors. Conclusions and Relevance Postoperative pulmonary complications are common in patients with American Society of Anesthesiologists physical status 3, despite current protective ventilation practices. Even mild PPCs are associated with increased early postoperative mortality, ICU admission, and length of stay (ICU and hospital). Mild frequent PPCs (eg, atelectasis and prolonged oxygen therapy need) deserve increased attention and intervention for improving perioperative outcomes.
Anesthesia & Analgesia | 2015
Bender Sp; William C. Paganelli; Gerety Lp; Tharp Wg; Amy Shanks; Michelle Housey; Randal S. Blank; Douglas A. Colquhoun; Ana Fernandez-Bustamante; Leslie C. Jameson; Sachin Kheterpal
BACKGROUND:The use of an intraoperative lung-protective ventilation strategy through tidal volume (TV) size reduction and positive end-expiratory pressure (PEEP) has been increasingly investigated. In this article, we describe the current intraoperative lung-protective ventilation practice patterns and trends. METHODS:By using the Multicenter Perioperative Outcomes Group database, we identified all general endotracheal anesthetics from January 2008 through December 2013 at 10 institutions. The following data were calculated: (1) percentage of patients receiving TV > 10 mL/kg predicted body weight (PBW); (2) median initial and overall TV in mL/kg PBW and; (3) percentage of patients receiving PEEP ≥ 5 cm H2O. The data were analyzed at 3-month intervals. Interinstitutional variability was assessed. RESULTS:A total of 330,823 patients met our inclusion criteria for this study. During the study period, the percentage of patients receiving TV > 10 mL/kg PBW was reduced for all patients (26% to 14%) and in the subpopulations of obese (41% to 25%), short stature (52% to 36%), and females (39% to 24%; all P values <0.001). There was a significant reduction in TV size (8.90–8.20 mL/kg PBW, P < 0.001). There was also a statistically significant but clinically irrelevant difference between initial and overall TV size (8.65 vs 8.63 mL/kg PBW, P < 0.001). Use of PEEP ≥ 5 cm H2O increased during the study period (25%–45%, P < 0.001). TV usage showed significant interinstitutional variability (P < 0.001). CONCLUSIONS:Although decreasing, a significant percentage of patients are ventilated with TV > 10 mL/kg PBW, especially if they are female, obese, or of short stature. The use of PEEP ≥ 5 cm H2O has increased significantly. Creating awareness of contemporary practice patterns and demonstrating the efficacy of lung-protective ventilation are still needed to optimize intraoperative ventilation.
Anesthesiology Clinics | 2012
Breandan Sullivan; Ferenc Puskas; Ana Fernandez-Bustamante
In high-risk surgeries with medically complicated patients, transesophageal echocardiography (TEE) adds an additional level of monitoring with which few can disagree. This article presents multiple applications of TEE that can assist both the anesthesiologist and the surgeon through major noncardiac thoracic surgery. It highlights how TEE can be used as an adjuvant to lung resection surgery; TEE as a monitor during lung transplantation; TEE to assess patients for extracorporeal membrane oxygenation; TEE for thoracic aortic surgery; and TEE in the assessment of patients with acute pulmonary hypertension undergoing noncardiac thoracic surgery.
PLOS ONE | 2015
Ana Fernandez-Bustamante; Amanda Agazio; Paul F. Wilson; Nancy Elkins; Luke Domaleski; Qianbin He; Kaily A. Baer; Angela Moss; Paul E. Wischmeyer; John E. Repine
Background Glutamine (GLN) attenuates acute lung injury (ALI) but its effect on alveolar macrophages is unknown. We hypothesized that GLN pretreatment would induce the anti-inflammatory CD163/heme oxygenase (HO)-1/p38-MAPK dephosphorylation pathway in alveolar macrophages and reduce ALI in rats insufflated with interleukin-1 (IL-1) and lipopolysaccharide (LPS). Methods Male Sprague-Dawley rats were randomized to the following groups: GLN-IL-1/LPS-, GLN+IL-1/LPS-, GLN-IL-1/LPS+, and GLN+IL-1/LPS+. GLN pretreatment was given via gavage (1g/kg L-alanyl-L-glutamine) daily for 2 days. ALI was subsequently induced by insufflating 50ng IL-1 followed by 5mg/kg E.coli LPS. After 24h, bronchoalveolar lavage (BAL) protein, lactate dehydrogenase (LDH) and neutrophil concentrations were analyzed. BAL alveolar macrophage CD163+ expression, HO-1 and p38-MAPK concentrations were measured, as well as alveolar macrophage tumor necrosis factor (TNF)-α and interleukin (IL)-10 concentrations. Histology and immunofluorescence studies were also performed. Results Following IL-1/LPS insufflation, GLN pretreated rats had significantly decreased BAL protein and LDH concentrations, but not BAL neutrophil counts, compared to non-GLN pretreated rats. The number of alveolar macrophages and the number of CD163+ macrophages were significantly increased in GLN pretreated IL-1/LPS-insufflated rats compared to non-GLN pretreated, IL-1/LPS-insufflated rats. GLN pretreatment before IL-1/LPS also significantly increased HO-1 concentrations and dephosphorylated p38-MAPK levels but not cytokine levels in alveolar macrophages. Immunofluorescence localized CD163 and HO-1 in alveolar macrophages. Conclusion Short-term GLN pretreatment activates the anti-inflammatory CD163/HO-1/p38-MAPK dephosphorylation pathway of alveolar macrophages and decreases capillary damage but not neutrophil recruitment in IL-1/LPS-insufflated rats.
Current Pharmaceutical Design | 2014
Ana Fernandez-Bustamante; John E. Repine
The Acute Respiratory Distress Syndrome (ARDS) is a highly fatal pro-inflammatory oxidative respiratory disease. Relatively recently, the modulating effects of chronic inflammatory processes on ARDS susceptibility have been recognized in a number of clinical studies. Herein, we briefly review some of the chronic conditions that have been reported to increase (cigarette smoking and alcohol abuse) or decrease (diabetes and obesity) susceptibility to ARDS. We also propose some potential pathways that may hold clues regarding the pathogenesis and/or therapy for ARDS.