Ana I. Arroba
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana I. Arroba.
Autophagy | 2012
Patricia Vázquez; Ana I. Arroba; Francesco Cecconi; Enrique J. de la Rosa; Patricia Boya; Flora de Pablo
Neuroepithelial cells undergoing differentiation efficiently remodel their cytoskeleton and shape in an energy-consuming process. The capacity of autophagy to recycle cellular components and provide energy could fulfill these requirements, thus supporting differentiation. However, little is known regarding the role of basal autophagy in neural differentiation. Here we report an increase in the expression of the autophagy genes Atg7, Becn1, Ambra1 and LC3 in vivo in the mouse embryonic olfactory bulb (OB) during the initial period of neuronal differentiation at E15.5, along with a parallel increase in neuronal markers. In addition, we observed an increase in LC3 lipidation and autophagic flux during neuronal differentiation in cultured OB-derived stem/progenitor cells. Pharmacological inhibition of autophagy with 3-MA or wortmannin markedly decreased neurogenesis. These observations were supported by similar findings in two autophagy-deficient genetic models. In Ambra1 loss-of-function homozygous mice (gt/gt) the expression of several neural markers was decreased in the OB at E13.5 in vivo. In vitro, Ambra1 haploinsufficient cells developed as small neurospheres with an impaired capacity for neuronal generation. The addition of methylpyruvate during stem/progenitor cell differentiation in culture largely reversed the inhibition of neurogenesis induced by either 3-MA or Ambra1 haploinsufficiency, suggesting that neural stem/progenitor cells activate autophagy to fulfill their high energy demands. Further supporting the role of autophagy for neuronal differentiation Atg5-null OB cells differentiating in culture displayed decreased TuJ1 levels and lower number of cells with neurites. These results reveal new roles for autophagy-related molecules Atg5 and Ambra1 during early neuronal differentiation of stem/progenitor cells.
Diabetes | 2015
Cristina Hernández; Patricia Bogdanov; Lidia Corraliza; Marta García-Ramírez; Cristina Solà-Adell; José A. Arranz; Ana I. Arroba; Ángela M. Valverde; Rafael Simó
Retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy (DR). Since glucagon-like peptide 1 (GLP-1) exerts neuroprotective effects in the central nervous system and the retina is ontogenically a brain-derived tissue, the aims of the current study were as follows: 1) to examine the expression and content of GLP-1 receptor (GLP-1R) in human and db/db mice retinas; 2) to determine the retinal neuroprotective effects of systemic and topical administration (eye drops) of GLP-1R agonists in db/db mice; and 3) to examine the underlying neuroprotective mechanisms. We have found abundant expression of GLP-1R in the human retina and retinas from db/db mice. Moreover, we have demonstrated that systemic administration of a GLP-1R agonist (liraglutide) prevents retinal neurodegeneration (glial activation, neural apoptosis, and electroretinographical abnormalities). This effect can be attributed to a significant reduction of extracellular glutamate and an increase of prosurvival signaling pathways. We have found a similar neuroprotective effect using topical administration of native GLP-1 and several GLP-1R agonists (liraglutide, lixisenatide, and exenatide). Notably, this neuroprotective action was observed without any reduction in blood glucose levels. These results suggest that GLP-1R activation itself prevents retinal neurodegeneration. Our results should open up a new approach in the treatment of the early stages of DR.
Investigative Ophthalmology & Visual Science | 2011
Ana I. Arroba; Noemí Álvarez-Lindo; Nico van Rooijen; Enrique J. de la Rosa
PURPOSE To characterize the effect of IGF-I in the rd10 mouse model of retinitis pigmentosa at the cellular level, focusing on the role of microglia in the neurodegenerative process. METHODS Both organotypic retinal explants and intravitreal injections were used to assess the effect of IGF-I on photoreceptor cell death in the Pde6b(rd10) mice. Cell death was determined by TUNEL in retinal sections and by ELISA of free nucleosomes in retinal extracts. The number and distribution of microglial cells was visualized by immunolabeling with Cd11b and Iba1 antibodies. Depletion of microglia in culture was achieved by treatment with liposomes containing clodronate. RESULTS Both ex vivo and in vivo IGF-I treatment reduced the number of TUNEL-positive nuclei in rd10 mouse retinas. In addition, IGF-I treatment in explants increased the number of microglial cells in the ONL. Depletion of microglia in explants with liposomes containing clodronate diminished the neuroprotective effect of IGF-I but also moderately reduced photoreceptor cell death in rd10 retinas cultured in the absence of IGF-I. CONCLUSIONS IGF-I is able to attenuate photoreceptor cell death both ex vivo and in vivo in the rd10 mouse retina. Microglia is required for the neuroprotective effect of IGF-I in the dystrophic retina. In addition, microglial cells play a detrimental role, seemingly led to neuroprotection by IGF-I.
Investigative Ophthalmology & Visual Science | 2008
Silvia Corrochano; R. Barhoum; Patricia Boya; Ana I. Arroba; Natalia Rodriguez-Muela; Violeta Gómez-Vicente; Fatima Bosch; Flora de Pablo; Pedro de la Villa; Enrique J. de la Rosa
PURPOSE Retinitis pigmentosa (RP) is a heterogeneous group of inherited conditions that lead to blindness and for which there is no effective therapy. Apoptosis of photoreceptors is a common feature in animal models of the disease. Thus, the authors studied the therapeutic potential of proinsulin, an antiapoptotic molecule active during retinal development. METHODS Transgenic mice expressing human proinsulin (hPi) in the skeletal muscle were generated in a mixed C57BL/6:SJL background and were back-crossed to a C57BL/6 background. Two independent lineages of transgenic mice were established in which hPi production in muscle was constitutive and not regulated by glucose levels. hPi levels in serum, muscle, and retina were determined with a commercial ELISA kit, visual function was evaluated by electroretinographic (ERG) recording, and programmed cell death was assessed by TUNEL. Immunohistochemistry was used to evaluate retinal structure preservation and oxidative damage. RESULTS Transgenic expression of hPi in the rd10 retinal degeneration mouse model led to prolonged vision, as determined by ERG recording, in a manner that was related to the level of transgene expression. This attenuation of visual deterioration was correlated with a delay in photoreceptor apoptosis and with the preservation of retinal cytoarchitecture, particularly that of the cones. CONCLUSIONS These results provide a new basis for possible therapies to counteract retinitis pigmentosa and a new tool to characterize the mechanisms involved in the progress of retinal neurodegeneration.
Advances in Experimental Medicine and Biology | 2014
Ana I. Arroba; Noemí Álvarez-Lindo; Nico van Rooijen; Enrique J. de la Rosa
Retinitis pigmentosa refers to a large, genetically heterogeneous group of retinal dystrophies. This condition is characterized by the gradual onset of blindness due to progressive deterioration of the retina, a process that includes photoreceptor and retinal-pigmented-epithelium cell decay and death, microglial recruitment, reactive gliosis, and vascular disorganization and regression. We found that early in the degenerative process, the rd10 mouse retina exhibits high levels of photoreceptor cell death and reactive Müller gliosis. In explant cultures, both degenerative processes were abrogated by IGF-I treatment. Moreover, the beneficial effect of IGF-I was diminished by microglial depletion using clodronate-containing liposomes. Interestingly, in the absence of IGF-I, microglial depletion partially prevented cell death without affecting Müller gliosis. These findings strongly suggest a role for microglia-Müller glia crosstalk in neuroprotection. However, a subpopulation of microglial cells appears to promote neurodegeneration in the dystrophic retina. Our findings indicate that beneficial neuroprotective effects may be achieved through strategies that modulate microglial cell responses.
Acta Diabetologica | 2017
Ana I. Arroba; Ángela M. Valverde
Abstract During last decades, the diagnosis of diabetes has been associated with several chronic complications such as diabetic retinopathy (DR). Recent studies of DR have revealed an inflammatory component, which precedes the detection of alterations in the visual function. During DR, the inflammatory process presents two opposite roles depending on the polarization of resident immune cells of the retina triggering proinflammatory (M1) or antiinflammatory (M2) actions. In an early stage of DR, the M2 response concurs with the M1 and is able to ameliorate inflammation and delay the progression of the disease. However, during the progression of DR, the M1 response is maintained whereas the M2 declines and, in this scenario, the classical proinflammatory signaling pathways are chronically activated leading to retinal neurodegeneration and the loss of visual function. The M1/M2 responses are closely related to the activation and polarization of microglial cells. This review aims to offer an overview of the recent insights into the role of microglial cells during inflammation in DR. We have focused on the possibility of modulating microglia polarization as a new therapeutic strategy in DR treatments.
Hepatology | 2017
M. Pilar Valdecantos; Virginia Pardo; Laura Ruiz; Luis Castro-Sánchez; Borja Lanzón; Elisa Fernández-Millán; Carmelo García-Monzón; Ana I. Arroba; Águeda González-Rodríguez; Fernando Escrivá; Carmen Álvarez; Francisco J. Rupérez; Coral Barbas; Anish Konkar; Jacqui Naylor; David C. Hornigold; Ana Lucia Gomes dos Santos; Maria A. Bednarek; Joseph Grimsby; Cristina M. Rondinone; Ángela M. Valverde
Because nonalcoholic steatohepatitis (NASH) is associated with impaired liver regeneration, we investigated the effects of G49, a dual glucagon‐like peptide‐1/glucagon receptor agonist, on NASH and hepatic regeneration. C57Bl/6 mice fed chow or a methionine and choline–deficient (MCD) diet for 1 week were divided into 4 groups: control (chow diet), MCD diet, chow diet plus G49, and M+G49 (MCD diet plus G49). Mice fed a high‐fat diet (HFD) for 10 weeks were divided into groups: HFD and H+G49 (HFD plus G49). Following 2 (MCD groups) or 3 (HFD groups) weeks of treatment with G49, partial hepatectomy (PH) was performed, and all mice were maintained on the same treatment schedule for 2 additional weeks. Analysis of liver function, hepatic regeneration, and comprehensive genomic and metabolic profiling were conducted. NASH was ameliorated in the M+G49 group, manifested by reduced inflammation, steatosis, oxidative stress, and apoptosis and increased mitochondrial biogenesis. G49 treatment was also associated with replenishment of intrahepatic glucose due to enhanced gluconeogenesis and reduced glucose use through the pentose phosphate cycle and oxidative metabolism. Following PH, G49 treatment increased survival, restored the cytokine‐mediated priming phase, and enhanced the proliferative capacity and hepatic regeneration ratio in mice on the MCD diet. NASH markers remained decreased in M+G49 mice after PH, and glucose use was shifted to the pentose phosphate cycle and oxidative metabolism. G49 administered immediately after PH was also effective at alleviating the pathological changes induced by the MCD diet. Benefits in terms of liver regeneration were also found in mice fed HFD and treated with G49. Conclusion: Dual‐acting glucagon‐like peptide‐1/glucagon receptor agonists such as G49 represent a novel therapeutic approach for patients with NASH and particularly those requiring PH. (Hepatology 2017;65:950‐968).
Acta Diabetologica | 2016
Elena Beltramo; Tatiana Lopatina; Aurora Mazzeo; Ana I. Arroba; Ángela M. Valverde; Cristina Hernández; Rafael Simó; Massimo Porta
AimsDiabetic retinopathy is considered a microvascular disease, but recent evidence has underlined early involvement of the neuroretina with interactions between microvascular and neural alterations. Topical administration of somatostatin (SST), a neuroprotective molecule with antiangiogenic properties, prevents diabetes-induced retinal neurodegeneration in animals. The α2-adrenergic receptor agonist brimonidine (BRM) decreases vitreoretinal vascular endothelial growth factor and inhibits blood–retinal barrier breakdown in diabetic rats. However, SST and BRM effects on microvascular cells have not yet been studied. We investigated the behaviour of these drugs on the crosstalk between microvasculature and neuroretina.MethodsExpression of SST receptors 1–5 in human retinal pericytes (HRP) was checked. We subsequently evaluated the effects of diabetic-like conditions (high glucose and/or hypoxia) with/without SST/BRM on HRP survival. Endothelial cells (EC) and photoreceptors were maintained in the above conditions and their conditioned media (CM) used to culture HRP. Vice versa, HRP-CM was used on EC and photoreceptors. Survival parameters were assessed.ResultsHRP express the SST receptor 1 (SSTR1). Glucose fluctuations mimicking those occurring in diabetic subjects are more damaging for pericytes and photoreceptors than stable high glucose and hypoxic conditions. SST/BRM added to HRP in diabetic-like conditions decrease EC apoptosis. However, neither SST nor BRM changed the response of pericytes and neuroretina–vascular crosstalk under diabetic-like conditions.ConclusionsRetinal pericytes express SSTR1, indicating that they can be a target for SST. Exposure to SST/BRM had no adverse effects, direct or mediated by the neuroretina, suggesting that these molecules could be safely evaluated for the treatment of ocular diseases.
Investigative Ophthalmology & Visual Science | 2013
Ana I. Arroba; Jesús Revuelta-Cervantes; Lorena Menes; Águeda González-Rodríguez; Virginia Pardo; Pedro de la Villa; Deborah J. Burks; Ángela M. Valverde
PURPOSE Mice with deletion of insulin receptor substrate (IRS) 2 develop type 2 diabetes and photoreceptor degeneration. Loss of protein tyrosine phosphatase 1B (PTP1B) in diabetic IRS2(-/-) mice restores insulin sensitivity and normalizes glucose homeostasis. Since insulin-like growth factor (IGF)-IR promotes survival of photoreceptors and is a substrate of PTP1B, we investigated IGF-IR-mediated survival signaling and visual function in PTP1B(-/-) and double mutant IRS2(-/-)/PTP1B(-/-) mice. METHODS IGF-IR-mediated Akt signaling was evaluated in IGF-I-stimulated retinal explants. Histologic and electroretinogram analysis was performed in wild-type (WT), IRS2(-/-), PTP1B(-/-), and the double mutant IRS2(-/-)/PTP1B(-/-) mice. RESULTS IGF-I stimulated the tyrosine phosphorylation of its receptor and Akt activation in retinal explants of WT mice. In PTP1B(-/-) retinal explants, these responses were enhanced. Conversely, in retinas from IRS2(-/-) mice, expression of PTP1B was increased, coincident with decreased IGF-I-mediated Akt serine 473 phosphorylation. PTP1B deletion in IRS2(-/-) mice also enhanced IGF-IR tyrosine phosphorylation but, unexpectedly, did not rescue Akt activation in response to IGF-I. One potential explanation is that PTEN was increased in retinas of IRS2(-/-) and IRS2(-/-)/PTP1B(-/-) mice. Histologic evaluation revealed alterations in various structures of the retina in IRS2(-/-) and IRS2(-/-)/PTP1B(-/-) mice, specifically in the outer nuclear layer (ONL) and retinal outer segments (ROS). Electroretinogram (ERG) analysis confirmed that PTP1B deficiency did not restore visual function in IRS2(-/-) mice. CONCLUSIONS Although loss of PTP1B enhances tyrosine phosphorylation of the IGF-IR in retinal explants of IRS2(-/-) mice, Akt activation remains defective owing to elevated PTEN levels and, thus, structural and functional visual defects persist in this model.
Biochimica et Biophysica Acta | 2016
Ester García-Casarrubios; Carlos de Moura; Ana I. Arroba; Nuria Pescador; María Calderon-Dominguez; Laura Garcia; Laura Herrero; Dolors Serra; Flávio Reis; Eugénia Carvalho; María Jesús Obregón; Ángela M. Valverde
New onset diabetes after transplantation (NODAT) is a metabolic disorder that affects 40% of patients on immunosuppressive agent (IA) treatment, such as rapamycin (also known as sirolimus). IAs negatively modulate insulin action in peripheral tissues including skeletal muscle, liver and white fat. However, the effects of IAs on insulin sensitivity and thermogenesis in brown adipose tissue (BAT) have not been investigated. We have analyzed the impact of rapamycin on insulin signaling, thermogenic gene-expression and mitochondrial respiration in BAT. Treatment of brown adipocytes with rapamycin for 16h significantly decreased insulin receptor substrate 1 (IRS1) protein expression and insulin-mediated protein kinase B (Akt) phosphorylation. Consequently, both insulin-induced glucose transporter 4 (GLUT4) translocation to the plasma membrane and glucose uptake were decreased. Early activation of the N-terminal Janus activated kinase (JNK) was also observed, thereby increasing IRS1 Ser 307 phosphorylation. These effects of rapamycin on insulin signaling in brown adipocytes were partly prevented by a JNK inhibitor. In vivo treatment of rats with rapamycin for three weeks abolished insulin-mediated Akt phosphorylation in BAT. Rapamycin also inhibited norepinephrine (NE)-induced lipolysis, the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and uncoupling protein (UCP)-1 in brown adipocytes. Importantly, basal mitochondrial respiration, proton leak and maximal respiratory capacity were significantly decreased in brown adipocytes treated with rapamycin. In conclusion, we demonstrate, for the first time the important role of brown adipocytes as target cells of rapamycin, suggesting that insulin resistance in BAT might play a major role in NODAT development.