Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Virginia Pardo is active.

Publication


Featured researches published by Virginia Pardo.


Cell Death and Disease | 2014

Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD

Águeda González-Rodríguez; Rafael Mayoral; Noelia Agra; M P Valdecantos; Virginia Pardo; María E. Miquilena-Colina; Javier Vargas-Castrillón; O Lo Iacono; Marco Corazzari; Gian Maria Fimia; Mauro Piacentini; Jordi Muntané; Lisardo Boscá; Carmelo García-Monzón; P Martín-Sanz; Ángela M. Valverde

The pathogenic mechanisms underlying the progression of non-alcoholic fatty liver disease (NAFLD) are not fully understood. In this study, we aimed to assess the relationship between endoplasmic reticulum (ER) stress and autophagy in human and mouse hepatocytes during NAFLD. ER stress and autophagy markers were analyzed in livers from patients with biopsy-proven non-alcoholic steatosis (NAS) or non-alcoholic steatohepatitis (NASH) compared with livers from subjects with histologically normal liver, in livers from mice fed with chow diet (CHD) compared with mice fed with high fat diet (HFD) or methionine-choline-deficient (MCD) diet and in primary and Huh7 human hepatocytes loaded with palmitic acid (PA). In NASH patients, significant increases in hepatic messenger RNA levels of markers of ER stress (activating transcription factor 4 (ATF4), glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP)) and autophagy (BCN1) were found compared with NAS patients. Likewise, protein levels of GRP78, CHOP and p62/SQSTM1 (p62) autophagic substrate were significantly elevated in NASH compared with NAS patients. In livers from mice fed with HFD or MCD, ER stress-mediated signaling was parallel to the blockade of the autophagic flux assessed by increases in p62, microtubule-associated protein 2 light chain 3 (LC3-II)/LC3-I ratio and accumulation of autophagosomes compared with CHD fed mice. In Huh7 hepatic cells, treatment with PA for 8 h triggered activation of both unfolding protein response and the autophagic flux. Conversely, prolonged treatment with PA (24 h) induced ER stress and cell death together with a blockade of the autophagic flux. Under these conditions, cotreatment with rapamycin or CHOP silencing ameliorated these effects and decreased apoptosis. Our results demonstrated that the autophagic flux is impaired in the liver from both NAFLD patients and murine models of NAFLD, as well as in lipid-overloaded human hepatocytes, and it could be due to elevated ER stress leading to apoptosis. Consequently, therapies aimed to restore the autophagic flux might attenuate or prevent the progression of NAFLD.


Cell Death and Disease | 2017

Pivotal role of protein tyrosine phosphatase 1B (PTP1B) in the macrophage response to pro-inflammatory and anti-inflammatory challenge

Paqui G. Través; Virginia Pardo; María Pimentel-Santillana; Águeda González-Rodríguez; Marina Mojena; Daniel Rico; Yenny Montenegro; Carmela Calés; Ángela M. Valverde; Lisardo Boscá

Inhibition of protein tyrosine phosphatase 1B (PTP1B) has been suggested as an attractive target to improve insulin sensitivity in different cell types. In the present work, we have investigated the effect of PTP1B deficiency on the response of human and murine macrophages. Using in vitro and in vivo approaches in mice and silencing PTP1B in human macrophages with specific siRNAs, we have demonstrated that PTP1B deficiency increases the effects of pro-inflammatory stimuli in both human and rodent macrophages at the time that decreases the response to alternative stimulation. Moreover, the absence of PTP1B induces a loss of viability in resting macrophages and mainly after activation through the classic pathway. Analysis of early gene expression in macrophages treated with pro-inflammatory stimuli confirmed this exacerbated inflammatory response in PTP1B-deficient macrophages. Microarray analysis in samples from wild-type and PTP1B-deficient macrophages obtained after 24 h of pro-inflammatory stimulation showed an activation of the p53 pathway, including the excision base repair pathway and the insulin signaling pathway in the absence of PTP1B. In animal models of lipopolysaccharide (LPS) and D-galactosamine challenge as a way to reveal in vivo inflammatory responses, animals lacking PTP1B exhibited a higher rate of death. Moreover, these animals showed an enhanced response to irradiation, in agreement with the data obtained in the microarray analysis. In summary, these results indicate that, although inhibition of PTP1B has potential benefits for the treatment of diabetes, it accentuates pro-inflammatory responses compromising at least macrophage viability.


Free Radical Biology and Medicine | 2015

Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes.

M. Pilar Valdecantos; Pedro L. Prieto-Hontoria; Virginia Pardo; Teresa Mòdol; Beatriz Santamaria; Minéia Weber; Laura Herrero; Dolors Serra; Jordi Muntané; Antonio Cuadrado; María J. Moreno-Aliaga; J. Alfredo Martínez; Ángela M. Valverde

Excess of saturated free fatty acids, such as palmitic acid (PA), in hepatocytes has been implicated in nonalcoholic fatty liver disease. α-Lipoic acid (LA) is an antioxidant that protects against oxidative stress conditions. We have investigated the effects of LA in the early activation of oxidative and endoplasmic reticulum stress, lipid accumulation, and Nrf2-mediated antioxidant defenses in hepatocytes treated with PA or in rats fed a high-fat diet. In primary human hepatocytes, a lipotoxic concentration of PA triggered endoplasmic reticulum stress, induced the apoptotic transcription factor CHOP, and increased the percentage of apoptotic cells. Cotreatment with LA prevented these effects. Similar results were found in mouse hepatocytes in which LA attenuated PA-mediated activation of caspase 3 and reduced lipid accumulation by decreasing PA uptake and increasing fatty acid oxidation and lipophagy, thereby preventing lipoapoptosis. Moreover, LA augmented the proliferation capacity of hepatocytes after PA challenge. Antioxidant effects of LA ameliorated reactive oxygen species production and endoplasmic reticulum stress and protected against mitochondrial apoptosis in hepatocytes treated with PA. Cotreatment with PA and LA induced an early nuclear translocation of Nrf2 and activated antioxidant enzymes, whereas reduction of Nrf2 by siRNA abolished the benefit of LA on PA-induced lipoapoptosis. Importantly, posttreatment with LA reversed the established damage induced by PA in hepatocytes, as well as preventing obesity-induced oxidative stress and lipoapoptosis in rat liver. In conclusion, our work has revealed that in hepatocytes, Nrf2 is an essential early player in the rescue of oxidative stress by LA leading to protection against PA-mediated lipoapoptosis.


Journal of Biological Chemistry | 2015

Opposite cross-talk by oleate and palmitate on insulin signaling in hepatocytes through macrophage activation.

Virginia Pardo; Águeda González-Rodríguez; Carlos Guijas; Jesús Balsinde; Ángela M. Valverde

Background: Chronic low grade inflammation during obesity is associated with impairments in the insulin signaling cascade. Results: Oleate and palmitate elicit opposite effects in insulin signaling in hepatocytes through macrophage stimulation. Conclusion: An endocrine/paracrine cross-talk between macrophages/Kupffer cells and hepatocytes modulates insulin signaling. Significance: Switching macrophage/Kupffer cell polarization will be of benefit against insulin resistance in the liver. Chronic low grade inflammation in adipose tissue during obesity is associated with an impairment of the insulin signaling cascade. In this study, we have evaluated the impact of palmitate or oleate overload of macrophage/Kupffer cells in triggering stress-mediated signaling pathways, in lipoapoptosis, and in the cross-talk with insulin signaling in hepatocytes. RAW 264.7 macrophages or Kupffer cells were stimulated with oleate or palmitate, and levels of M1/M2 polarization markers and the lipidomic profile of eicosanoids were analyzed. Whereas proinflammatory cytokines and total eicosanoids were elevated in macrophages/Kupffer cells stimulated with palmitate, enhanced arginase 1 and lower leukotriene B4 (LTB4) levels were detected in macrophages stimulated with oleate. When hepatocytes were pretreated with conditioned medium (CM) from RAW 264.7 or Kupffer cells loaded with palmitate (CM-P), phosphorylation of stress kinases and endoplasmic reticulum stress signaling was increased, insulin signaling was impaired, and lipoapoptosis was detected. Conversely, enhanced insulin receptor-mediated signaling and reduced levels of the phosphatases protein tyrosine phosphatase 1B (PTP1B) and phosphatase and tensin homolog (PTEN) were found in hepatocytes treated with CM from macrophages stimulated with oleate (CM-O). Supplementation of CM-O with LTB4 suppressed insulin sensitization and increased PTP1B and PTEN. Furthermore, LTB4 decreased insulin receptor tyrosine phosphorylation in hepatocytes, activated the NFκB pathway, and up-regulated PTP1B and PTEN, these effects being mediated by LTB4 receptor BTL1. In conclusion, oleate and palmitate elicit an opposite cross-talk between macrophages/Kupffer cells and hepatocytes. Whereas CM-P interferes at the early steps of insulin signaling, CM-O increases insulin sensitization, possibly by reducing LTB4.


Food and Chemical Toxicology | 2015

Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection

Virginia Pardo; Águeda González-Rodríguez; Jordi Muntané; Sara C. Kozma; Ángela M. Valverde

The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes. In human and mouse hepatocytes palmitic acid at a lipotoxic concentration triggered early activation of endoplasmic reticulum (ER) stress-related kinases, induced the apoptotic transcription factor CHOP, activated caspase 3 and increased the percentage of apoptotic cells. These effects concurred with decreased IR/IRS1/Akt insulin pathway. Oleic acid suppressed the toxic effects of palmitic acid on ER stress activation, lipoapoptosis and insulin resistance. Besides, oleic acid suppressed palmitic acid-induced activation of S6K1. This protection was mimicked by pharmacological or genetic inhibition of S6K1 in hepatocytes. In conclusion, this is the first study highlighting the activation of S6K1 by palmitic acid as a common and novel mechanism by which its inhibition by oleic acid prevents ER stress, lipoapoptosis and insulin resistance in hepatocytes.


Molecular Nutrition & Food Research | 2015

Resveratrol treatment restores peripheral insulin sensitivity in diabetic mice in a sirt1‐independent manner

Águeda González-Rodríguez; Beatriz Santamaria; José Antonio Mas-Gutierrez; Elisa Fernández-Millán; Virginia Pardo; Carmen Álvarez; Antonio Cuadrado; Manuel Ros; Manuel Serrano; Ángela M. Valverde

SCOPE Mice with deletion of insulin receptor substrate (IRS) 2 develop hyperglycaemia, impaired hepatic insulin signaling and elevated gluconeogenesis. Protein tyrosine phosphatase 1B (PTP1B) inhibition by resveratrol improves peripheral insulin sensitivity of these mice. Although resveratrol activates Sirtuin1 (Sirt1), the mechanisms underlying its beneficial effects are not totally elucidated. In this study, we have investigated whether Sirt1 mediates the effects of resveratrol in controlling insulin resistance in diabetic mice. METHODS AND RESULTS We attempted to ameliorate peripheral insulin resistance in two diabetic models, Irs2-deficient (Irs2(-/-)) mice and streptozotocin (STZ)-injected mice by resveratrol treatment or Sirt1 overexpression. Resveratrol improved systemic insulin sensitivity of Irs2-deficient mice. Irs2-deficient mice are characterized by high levels of PTP1B expression in liver and muscle. Interestingly, resveratrol decreased PTP1B in both tissues, thereby restoring IRS1-mediated insulin signaling. Moreover, resveratrol also restored insulin sensitivity and hepatic insulin signaling in STZ-diabetic mice. In contrast, moderate overexpression of Sirt1 neither normalized PTP1B levels nor restored insulin signaling in Irs2-deficient mice or STZ-diabetic mice. CONCLUSION Resveratrol improves peripheral insulin signaling independently of Sirt1 in diabetic mice in association with the inhibition of PTP1B and, therefore, this polyphenol could be an effective adjuvant for the treatment of diabetes.


Hepatology | 2017

A novel glucagon‐like peptide 1/glucagon receptor dual agonist improves steatohepatitis and liver regeneration in mice

M. Pilar Valdecantos; Virginia Pardo; Laura Ruiz; Luis Castro-Sánchez; Borja Lanzón; Elisa Fernández-Millán; Carmelo García-Monzón; Ana I. Arroba; Águeda González-Rodríguez; Fernando Escrivá; Carmen Álvarez; Francisco J. Rupérez; Coral Barbas; Anish Konkar; Jacqui Naylor; David C. Hornigold; Ana Lucia Gomes dos Santos; Maria A. Bednarek; Joseph Grimsby; Cristina M. Rondinone; Ángela M. Valverde

Because nonalcoholic steatohepatitis (NASH) is associated with impaired liver regeneration, we investigated the effects of G49, a dual glucagon‐like peptide‐1/glucagon receptor agonist, on NASH and hepatic regeneration. C57Bl/6 mice fed chow or a methionine and choline–deficient (MCD) diet for 1 week were divided into 4 groups: control (chow diet), MCD diet, chow diet plus G49, and M+G49 (MCD diet plus G49). Mice fed a high‐fat diet (HFD) for 10 weeks were divided into groups: HFD and H+G49 (HFD plus G49). Following 2 (MCD groups) or 3 (HFD groups) weeks of treatment with G49, partial hepatectomy (PH) was performed, and all mice were maintained on the same treatment schedule for 2 additional weeks. Analysis of liver function, hepatic regeneration, and comprehensive genomic and metabolic profiling were conducted. NASH was ameliorated in the M+G49 group, manifested by reduced inflammation, steatosis, oxidative stress, and apoptosis and increased mitochondrial biogenesis. G49 treatment was also associated with replenishment of intrahepatic glucose due to enhanced gluconeogenesis and reduced glucose use through the pentose phosphate cycle and oxidative metabolism. Following PH, G49 treatment increased survival, restored the cytokine‐mediated priming phase, and enhanced the proliferative capacity and hepatic regeneration ratio in mice on the MCD diet. NASH markers remained decreased in M+G49 mice after PH, and glucose use was shifted to the pentose phosphate cycle and oxidative metabolism. G49 administered immediately after PH was also effective at alleviating the pathological changes induced by the MCD diet. Benefits in terms of liver regeneration were also found in mice fed HFD and treated with G49. Conclusion: Dual‐acting glucagon‐like peptide‐1/glucagon receptor agonists such as G49 represent a novel therapeutic approach for patients with NASH and particularly those requiring PH. (Hepatology 2017;65:950‐968).


Phytochemistry | 2012

Studies of naturally occurring friedelane triterpenoids as insulin sensitizers in the treatment type 2 diabetes mellitus

Alejandro E. Ardiles; Águeda González-Rodríguez; Marvin J. Núñez; Nayra R. Perestelo; Virginia Pardo; Ignacio A. Jiménez; Ángela M. Valverde; Isabel L. Bazzocchi

Type 2 diabetes mellitus (T2DM) is a rapidly expanding public epidemic and frequently results in severe vascular complications. In an attempt to find anti-diabetic agents, we report herein on the isolation, structural elucidation and bioactivity of nine friedelane-type triterpenes (1-9) and twenty two known ones (10-31) from the root barks of Celastrus vulcanicola and Maytenus jelskii. Their structures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques. Two compounds from this series (1 and 3) exhibited increased insulin-mediated signalling, which suggests these friedelane triterpenes have potential therapeutic use in insulin resistant states.


Diabetes | 2016

Heme-Regulated eIF2α Kinase Modulates Hepatic FGF21 and Is Activated by PPARβ/δ Deficiency

Mohammad Zarei; Emma Barroso; Rosana Leiva; Marta Barniol-Xicota; Eugènia Pujol; Carmen Escolano; Santiago Vázquez; Xavier Palomer; Virginia Pardo; Águeda González-Rodríguez; Ángela M. Valverde; Tania Quesada-López; Francesc Villarroya; Walter Wahli; Manuel Vázquez-Carrera

Fibroblast growth factor 21 (FGF21), a peptide hormone with pleiotropic effects on carbohydrate and lipid metabolism, is considered a target for the treatment of diabetes. We investigated the role of peroxisome proliferator–activated receptor (PPAR) β/δ deficiency in hepatic FGF21 regulation. Increased Fgf21 expression was observed in the livers of PPARβ/δ-null mice and in mouse primary hepatocytes when this receptor was knocked down by small interfering RNA (siRNA). Increased Fgf21 was associated with enhanced protein levels in the heme-regulated eukaryotic translation initiation factor 2α (eIF2α) kinase (HRI). This increase caused enhanced levels of phosphorylated eIF2α and activating transcription factor (ATF) 4, which is essential for Fgf21-induced expression. siRNA analysis demonstrated that HRI regulates Fgf21 expression in primary hepatocytes. Enhanced Fgf21 expression attenuated tunicamycin-induced endoplasmic reticulum stress, as demonstrated by using a neutralizing antibody against FGF21. Of note, increased Fgf21 expression in mice fed a high-fat diet or hepatocytes exposed to palmitate was accompanied by reduced PPARβ/δ and activation of the HRI-eIF2α-ATF4 pathway. Moreover, pharmacological activation of HRI increased Fgf21 expression and reduced lipid-induced hepatic steatosis and glucose intolerance, but these effects were not observed in Fgf21-null mice. Overall, these findings suggest that HRI is a potential target for regulating hepatic FGF21 levels.


Investigative Ophthalmology & Visual Science | 2013

Loss of protein tyrosine phosphatase 1B increases IGF-I receptor tyrosine phosphorylation but does not rescue retinal defects in IRS2-deficient mice.

Ana I. Arroba; Jesús Revuelta-Cervantes; Lorena Menes; Águeda González-Rodríguez; Virginia Pardo; Pedro de la Villa; Deborah J. Burks; Ángela M. Valverde

PURPOSE Mice with deletion of insulin receptor substrate (IRS) 2 develop type 2 diabetes and photoreceptor degeneration. Loss of protein tyrosine phosphatase 1B (PTP1B) in diabetic IRS2(-/-) mice restores insulin sensitivity and normalizes glucose homeostasis. Since insulin-like growth factor (IGF)-IR promotes survival of photoreceptors and is a substrate of PTP1B, we investigated IGF-IR-mediated survival signaling and visual function in PTP1B(-/-) and double mutant IRS2(-/-)/PTP1B(-/-) mice. METHODS IGF-IR-mediated Akt signaling was evaluated in IGF-I-stimulated retinal explants. Histologic and electroretinogram analysis was performed in wild-type (WT), IRS2(-/-), PTP1B(-/-), and the double mutant IRS2(-/-)/PTP1B(-/-) mice. RESULTS IGF-I stimulated the tyrosine phosphorylation of its receptor and Akt activation in retinal explants of WT mice. In PTP1B(-/-) retinal explants, these responses were enhanced. Conversely, in retinas from IRS2(-/-) mice, expression of PTP1B was increased, coincident with decreased IGF-I-mediated Akt serine 473 phosphorylation. PTP1B deletion in IRS2(-/-) mice also enhanced IGF-IR tyrosine phosphorylation but, unexpectedly, did not rescue Akt activation in response to IGF-I. One potential explanation is that PTEN was increased in retinas of IRS2(-/-) and IRS2(-/-)/PTP1B(-/-) mice. Histologic evaluation revealed alterations in various structures of the retina in IRS2(-/-) and IRS2(-/-)/PTP1B(-/-) mice, specifically in the outer nuclear layer (ONL) and retinal outer segments (ROS). Electroretinogram (ERG) analysis confirmed that PTP1B deficiency did not restore visual function in IRS2(-/-) mice. CONCLUSIONS Although loss of PTP1B enhances tyrosine phosphorylation of the IGF-IR in retinal explants of IRS2(-/-) mice, Akt activation remains defective owing to elevated PTEN levels and, thus, structural and functional visual defects persist in this model.

Collaboration


Dive into the Virginia Pardo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmelo García-Monzón

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Carmen Álvarez

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Ana I. Arroba

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Ruiz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatriz Santamaria

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge