Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana I. Kuehne is active.

Publication


Featured researches published by Ana I. Kuehne.


Nature | 2011

Ebola virus entry requires the cholesterol transporter Niemann–Pick C1

Jan E. Carette; Matthijs Raaben; Anthony C. Wong; Andrew S. Herbert; Gregor Obernosterer; Nirupama Mulherkar; Ana I. Kuehne; Philip J. Kranzusch; April M. Griffin; Gordon Ruthel; Paola Dal Cin; John M. Dye; Sean P. J. Whelan; Kartik Chandran; Thijn R. Brummelkamp

Infections by the Ebola and Marburg filoviruses cause a rapidly fatal haemorrhagic fever in humans for which no approved antivirals are available. Filovirus entry is mediated by the viral spike glycoprotein (GP), which attaches viral particles to the cell surface, delivers them to endosomes and catalyses fusion between viral and endosomal membranes. Additional host factors in the endosomal compartment are probably required for viral membrane fusion; however, despite considerable efforts, these critical host factors have defied molecular identification. Here we describe a genome-wide haploid genetic screen in human cells to identify host factors required for Ebola virus entry. Our screen uncovered 67 mutations disrupting all six members of the homotypic fusion and vacuole protein-sorting (HOPS) multisubunit tethering complex, which is involved in the fusion of endosomes to lysosomes, and 39 independent mutations that disrupt the endo/lysosomal cholesterol transporter protein Niemann–Pick C1 (NPC1). Cells defective for the HOPS complex or NPC1 function, including primary fibroblasts derived from human Niemann–Pick type C1 disease patients, are resistant to infection by Ebola virus and Marburg virus, but remain fully susceptible to a suite of unrelated viruses. We show that membrane fusion mediated by filovirus glycoproteins and viral escape from the vesicular compartment require the NPC1 protein, independent of its known function in cholesterol transport. Our findings uncover unique features of the entry pathway used by filoviruses and indicate potential antiviral strategies to combat these deadly agents.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Postexposure antibody prophylaxis protects nonhuman primates from filovirus disease

John M. Dye; Andrew S. Herbert; Ana I. Kuehne; James F. Barth; Majidat Muhammad; Samantha E. Zak; Ramon A. Ortiz; Laura I. Prugar; William D. Pratt

Antibody therapies to prevent or limit filovirus infections have received modest interest in recent years, in part because of early negative experimental evidence. We have overcome the limitations of this approach, leveraging the use of antibody from nonhuman primates (NHPs) that survived challenge to filoviruses under controlled conditions. By using concentrated, polyclonal IgG antibody from these survivors, we treated filovirus-infected NHPs with multiple doses administered over the clinical phase of disease. In the first study, Marburg virus (MARV)-infected NHPs were treated 15 to 30 min postexposure with virus-specific IgG, with additional treatments on days 4 and 8 postexposure. The postexposure IgG treatment was completely protective, with no signs of disease or detectable viremia. MARV-specific IgM antibody responses were generated, and all macaques survived rechallenge with MARV, suggesting that they generated an immune response to virus replication. In the next set of studies, NHPs were infected with MARV or Ebola virus (EBOV), and treatments were delayed 48 h, with additional treatments on days 4 and 8 postexposure. The delayed treatments protected both MARV- and EBOV-challenged NHPs. In both studies, two of the three IgG-treated NHPs had no clinical signs of illness, with the third NHP developing mild and delayed signs of disease followed by full recovery. These studies clearly demonstrate that postexposure antibody treatments can protect NHPs and open avenues for filovirus therapies for human use using established Food and Drug Administration-approved polyclonal or monoclonal antibody technologies.


The EMBO Journal | 2012

Ebola virus entry requires the host-programmed recognition of an intracellular receptor

Emily Happy Miller; Gregor Obernosterer; Matthijs Raaben; Andrew S. Herbert; Maika S. Deffieu; Anuja Krishnan; Esther Ndungo; Rohini G. Sandesara; Jan E. Carette; Ana I. Kuehne; Gordon Ruthel; Suzanne R. Pfeffer; John M. Dye; Sean P. J. Whelan; Thijn R. Brummelkamp; Kartik Chandran

Ebola and Marburg filoviruses cause deadly outbreaks of haemorrhagic fever. Despite considerable efforts, no essential cellular receptors for filovirus entry have been identified. We showed previously that Niemann‐Pick C1 (NPC1), a lysosomal cholesterol transporter, is required for filovirus entry. Here, we demonstrate that NPC1 is a critical filovirus receptor. Human NPC1 fulfills a cardinal property of viral receptors: it confers susceptibility to filovirus infection when expressed in non‐permissive reptilian cells. The second luminal domain of NPC1 binds directly and specifically to the viral glycoprotein, GP, and a synthetic single‐pass membrane protein containing this domain has viral receptor activity. Purified NPC1 binds only to a cleaved form of GP that is generated within cells during entry, and only viruses containing cleaved GP can utilize a receptor retargeted to the cell surface. Our findings support a model in which GP cleavage by endosomal cysteine proteases unmasks the binding site for NPC1, and GP–NPC1 engagement within lysosomes promotes a late step in entry proximal to viral escape into the host cytoplasm. NPC1 is the first known viral receptor that recognizes its ligand within an intracellular compartment and not at the plasma membrane.


Nature Structural & Molecular Biology | 2011

A shared structural solution for neutralizing ebolaviruses

João M. Dias; Ana I. Kuehne; Dafna M. Abelson; Shridhar Bale; Anthony C. Wong; Peter Halfmann; Majidat Muhammad; Marnie L. Fusco; Samantha E. Zak; Eugene Kang; Yoshihiro Kawaoka; Kartik Chandran; John M. Dye; Erica Ollmann Saphire

Sudan virus (genus Ebolavirus) is lethal, yet no monoclonal antibody is known to neutralize it. We here describe antibody 16F6 that neutralizes Sudan virus and present its structure bound to the trimeric viral glycoprotein. Unexpectedly, the 16F6 epitope overlaps that of KZ52, the only other antibody against the GP1,2 core to be visualized to date. Furthermore, both antibodies against this crucial epitope bridging GP1–GP2 neutralize at a post-internalization step—probably fusion.


Science | 2014

Lassa virus entry requires a trigger-induced receptor switch

Lucas T. Jae; Matthijs Raaben; Andrew S. Herbert; Ana I. Kuehne; Ariel S. Wirchnianski; Timothy K. Soh; Sarah H. Stubbs; Hans Janssen; Markus Damme; Paul Saftig; Sean P. J. Whelan; John M. Dye; Thijn R. Brummelkamp

How Lassa virus breaks and enters Lassa virus, which spreads from rodents to humans, infecting about half a million people every year, can lead to deadly hemorrhagic fever. Like many viruses, Lassa virus binds to cell surface receptors. Jae et al. now show that to enter a cell, the virus requires a second receptor, this one inside the infected cell. This requirement sheds light on the “enigmatic resistance” of bird cells to Lassa virus observed three decades ago. Although bird cells have the cell surface receptor, the intracellular receptor cannot bind the virus, stopping it in its tracks. Science, this issue p. 1506 Lassa virus entry in susceptible species involves a pH-dependent switch to a second receptor within the lysosome. Lassa virus spreads from a rodent to humans and can lead to lethal hemorrhagic fever. Despite its broad tropism, chicken cells were reported 30 years ago to resist infection. We found that Lassa virus readily engaged its cell-surface receptor α-dystroglycan in avian cells, but virus entry in susceptible species involved a pH-dependent switch to an intracellular receptor, the lysosome-resident protein LAMP1. Iterative haploid screens revealed that the sialyltransferase ST3GAL4 was required for the interaction of the virus glycoprotein with LAMP1. A single glycosylated residue in LAMP1, present in susceptible species but absent in birds, was essential for interaction with the Lassa virus envelope protein and subsequent infection. The resistance of Lamp1-deficient mice to Lassa virus highlights the relevance of this receptor switch in vivo.


Journal of Virology | 2005

Protective Cytotoxic T-Cell Responses Induced by Venezuelan Equine Encephalitis Virus Replicons Expressing Ebola Virus Proteins

Gene G. Olinger; Michael Adam Bailey; John M. Dye; Russell R. Bakken; Ana I. Kuehne; John Kondig; Julie Wilson; Robert J. Hogan; Mary Kate Hart

ABSTRACT Infection with Ebola virus causes a severe disease accompanied by high mortality rates, and there are no licensed vaccines or therapies available for human use. Filovirus vaccine research efforts still need to determine the roles of humoral and cell-mediated immune responses in protection from Ebola virus infection. Previous studies indicated that exposure to Ebola virus proteins expressed from packaged Venezuelan equine encephalitis virus replicons elicited protective immunity in mice and that antibody-mediated protection could only be demonstrated after vaccination against the glycoprotein. In this study, the murine CD8+ T-cell responses to six Ebola virus proteins were examined. CD8+ T cells specific for Ebola virus glycoprotein, nucleoprotein, and viral proteins (VP24, VP30, VP35, and VP40) were identified by intracellular cytokine assays using splenocytes from vaccinated mice. The cells were expanded by restimulation with peptides and demonstrated cytolytic activity. Adoptive transfer of the CD8+ cytotoxic T cells protected filovirus naïve mice from challenge with Ebola virus. These data support a role for CD8+ cytotoxic T cells as part of a protective mechanism induced by vaccination against six Ebola virus proteins and provide additional evidence that cytotoxic T-cell responses can contribute to protection from filovirus infections.


Journal of Virology | 2013

Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Protects Nonhuman Primates from Intramuscular and Aerosol Challenge with Ebolavirus

Andrew S. Herbert; Ana I. Kuehne; James F. Barth; Ramon A. Ortiz; Donald K. Nichols; Samantha E. Zak; Spencer W. Stonier; Majidat Muhammad; Russell R. Bakken; Laura I. Prugar; Gene G. Olinger; Jennifer L. Groebner; John S. Lee; William D. Pratt; Max Custer; Kurt I. Kamrud; Jonathan F. Smith; Mary Kate Hart; John M. Dye

ABSTRACT There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.


eLife | 2015

Filovirus receptor NPC1 contributes to species-specific patterns of ebolavirus susceptibility in bats

Melinda Ng; Esther Ndungo; Maria E. Kaczmarek; Andrew S. Herbert; Tabea Binger; Ana I. Kuehne; Rohit K. Jangra; John A. Hawkins; Robert J. Gifford; Rohan Biswas; Ann Demogines; Rebekah M. James; Meng Yu; Thijn R. Brummelkamp; Christian Drosten; Lin-Fa Wang; Jens H. Kuhn; Marcel A. Müller; John M. Dye; Sara L. Sawyer; Kartik Chandran

Biological factors that influence the host range and spillover of Ebola virus (EBOV) and other filoviruses remain enigmatic. While filoviruses infect diverse mammalian cell lines, we report that cells from African straw-colored fruit bats (Eidolon helvum) are refractory to EBOV infection. This could be explained by a single amino acid change in the filovirus receptor, NPC1, which greatly reduces the affinity of EBOV-NPC1 interaction. We found signatures of positive selection in bat NPC1 concentrated at the virus-receptor interface, with the strongest signal at the same residue that controls EBOV infection in Eidolon helvum cells. Our work identifies NPC1 as a genetic determinant of filovirus susceptibility in bats, and suggests that some NPC1 variations reflect host adaptations to reduce filovirus replication and virulence. A single viral mutation afforded escape from receptor control, revealing a pathway for compensatory viral evolution and a potential avenue for expansion of filovirus host range in nature. DOI: http://dx.doi.org/10.7554/eLife.11785.001


Journal of Virology | 2012

Structure of an Antibody in Complex with Its Mucin Domain Linear Epitope That Is Protective against Ebola Virus

Daniel Olal; Ana I. Kuehne; Shridhar Bale; Peter Halfmann; Takao Hashiguchi; Marnie L. Fusco; Jeffrey E. Lee; Liam B. King; Yoshihiro Kawaoka; John M. Dye; Erica Ollmann Saphire

ABSTRACT Antibody 14G7 is protective against lethal Ebola virus challenge and recognizes a distinct linear epitope in the prominent mucin-like domain of the Ebola virus glycoprotein GP. The structure of 14G7 in complex with its linear peptide epitope has now been determined to 2.8 Å. The structure shows that this GP sequence forms a tandem β-hairpin structure that binds deeply into a cleft in the antibody-combining site. A key threonine at the apex of one turn is critical for antibody interaction and is conserved among all Ebola viruses. This work provides further insight into the mechanism of protection by antibodies that target the protruding, highly accessible mucin-like domain of Ebola virus and the structural framework for understanding and characterizing candidate immunotherapeutics.


Mbio | 2015

Niemann-Pick C1 Is Essential for Ebolavirus Replication and Pathogenesis In Vivo

Andrew S. Herbert; Cristin Davidson; Ana I. Kuehne; Russell R. Bakken; Stephen Braigen; Kathryn E. Gunn; Sean P. J. Whelan; Thijn R. Brummelkamp; Nancy A. Twenhafel; Kartik Chandran; Steven U. Walkley; John M. Dye

ABSTRACT Recent work demonstrated that the Niemann-Pick C1 (NPC1) protein is an essential entry receptor for filoviruses. While previous studies focused on filovirus entry requirements of NPC1 in vitro, its roles in filovirus replication and pathogenesis in vivo remain unclear. Here, we evaluated the importance of NPC1, and its partner in cholesterol transport, NPC2, by using a mouse model of Ebolavirus (EBOV) disease. We found that, whereas wild-type mice had high viral loads and succumbed to EBOV infection, Npc1−/− mice were entirely free of viral replication and completely protected from EBOV disease. Interestingly, Npc1+/− mice transiently developed high levels of viremia, but were nevertheless substantially protected from EBOV challenge. We also found Npc2−/− mice to be fully susceptible to EBOV infection, while Npc1−/− mice treated to deplete stored lysosomal cholesterol remained completely resistant to EBOV infection. These results provide mechanistic evidence that NPC1 is directly required for EBOV infection in vivo, with little or no role for NPC1/NPC2-dependent cholesterol transport. Finally, we assessed the in vivo antiviral efficacies of three compounds known to inhibit NPC1 function or NPC1-glycoprotein binding in vitro. Two compounds reduced viral titers in vivo and provided a modest, albeit not statistically significant, degree of protection. Taken together, our results show that NPC1 is critical for replication and pathogenesis in animals and is a bona fide target for development of antifilovirus therapeutics. Additionally, our findings with Npc1+/− mice raise the possibility that individuals heterozygous for NPC1 may have a survival advantage in the face of EBOV infection. IMPORTANCE Researchers have been searching for an essential filovirus receptor for decades, and numerous candidate receptors have been proposed. However, none of the proposed candidate receptors has proven essential in all in vitro scenarios, nor have they proven essential when evaluated using animal models. In this report, we provide the first example of a knockout mouse that is completely refractory to EBOV infection, replication, and disease. The findings detailed here provide the first critical in vivo data illustrating the absolute requirement of NPC1 for filovirus infection in mice. Our work establishes NPC1 as a legitimate target for the development of anti-EBOV therapeutics. However, the limited success of available NPC1 inhibitors to protect mice from EBOV challenge highlights the need for new molecules or approaches to target NPC1 in vivo. Researchers have been searching for an essential filovirus receptor for decades, and numerous candidate receptors have been proposed. However, none of the proposed candidate receptors has proven essential in all in vitro scenarios, nor have they proven essential when evaluated using animal models. In this report, we provide the first example of a knockout mouse that is completely refractory to EBOV infection, replication, and disease. The findings detailed here provide the first critical in vivo data illustrating the absolute requirement of NPC1 for filovirus infection in mice. Our work establishes NPC1 as a legitimate target for the development of anti-EBOV therapeutics. However, the limited success of available NPC1 inhibitors to protect mice from EBOV challenge highlights the need for new molecules or approaches to target NPC1 in vivo.

Collaboration


Dive into the Ana I. Kuehne's collaboration.

Top Co-Authors

Avatar

John M. Dye

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Andrew S. Herbert

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Leslie Lobel

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Ariel Sobarzo

Ben-Gurion University of the Negev

View shared research outputs
Top Co-Authors

Avatar

Kartik Chandran

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Majidat Muhammad

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Russell R. Bakken

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Spencer W. Stonier

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Thijn R. Brummelkamp

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Gene G. Olinger

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge