Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Russell R. Bakken is active.

Publication


Featured researches published by Russell R. Bakken.


Journal of Virology | 2005

Protective Cytotoxic T-Cell Responses Induced by Venezuelan Equine Encephalitis Virus Replicons Expressing Ebola Virus Proteins

Gene G. Olinger; Michael Adam Bailey; John M. Dye; Russell R. Bakken; Ana I. Kuehne; John Kondig; Julie Wilson; Robert J. Hogan; Mary Kate Hart

ABSTRACT Infection with Ebola virus causes a severe disease accompanied by high mortality rates, and there are no licensed vaccines or therapies available for human use. Filovirus vaccine research efforts still need to determine the roles of humoral and cell-mediated immune responses in protection from Ebola virus infection. Previous studies indicated that exposure to Ebola virus proteins expressed from packaged Venezuelan equine encephalitis virus replicons elicited protective immunity in mice and that antibody-mediated protection could only be demonstrated after vaccination against the glycoprotein. In this study, the murine CD8+ T-cell responses to six Ebola virus proteins were examined. CD8+ T cells specific for Ebola virus glycoprotein, nucleoprotein, and viral proteins (VP24, VP30, VP35, and VP40) were identified by intracellular cytokine assays using splenocytes from vaccinated mice. The cells were expanded by restimulation with peptides and demonstrated cytolytic activity. Adoptive transfer of the CD8+ cytotoxic T cells protected filovirus naïve mice from challenge with Ebola virus. These data support a role for CD8+ cytotoxic T cells as part of a protective mechanism induced by vaccination against six Ebola virus proteins and provide additional evidence that cytotoxic T-cell responses can contribute to protection from filovirus infections.


Vaccine | 2000

Improved mucosal protection against Venezuelan equine encephalitis virus is induced by the molecularly defined, live- attenuated V3526 vaccine candidate.

Mary Kate Hart; K. Caswell-Stephan; Russell R. Bakken; Ralph Tammariello; William D. Pratt; Nancy L. Davis; Robert E. Johnston; Jonathan F. Smith; K. Steele

The genetically engineered, live-attenuated Venezuelan equine encephalitis (VEE) virus vaccine candidate, V3526, was evaluated as a replacement for the TC-83 virus vaccine. Protection from lethal subcutaneous or aerosol challenge was evaluated in vaccinated mice clinically and immunohistochemically. Subcutaneous administration of V3526 induced systemic and mucosal protection more efficiently than did the TC-83 vaccine. The bronchial IgA responses induced in mice by subcutaneous administration of vaccines significantly corresponded to the ability to survive aerosol challenge with virulent virus. Furthermore, V3526 delivered by aerosol induced more complete mucosal protection than either vaccine administered subcutaneously. The ability of V3526 to induce protection in mice warrants its consideration for further testing as a potential vaccine candidate for human use.


Journal of Virology | 2013

Venezuelan Equine Encephalitis Virus Replicon Particle Vaccine Protects Nonhuman Primates from Intramuscular and Aerosol Challenge with Ebolavirus

Andrew S. Herbert; Ana I. Kuehne; James F. Barth; Ramon A. Ortiz; Donald K. Nichols; Samantha E. Zak; Spencer W. Stonier; Majidat Muhammad; Russell R. Bakken; Laura I. Prugar; Gene G. Olinger; Jennifer L. Groebner; John S. Lee; William D. Pratt; Max Custer; Kurt I. Kamrud; Jonathan F. Smith; Mary Kate Hart; John M. Dye

ABSTRACT There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.


Cell | 2017

Antibodies from a Human Survivor Define Sites of Vulnerability for Broad Protection against Ebolaviruses

Anna Z. Wec; Andrew S. Herbert; Charles D. Murin; Elisabeth K. Nyakatura; Dafna M. Abelson; J. Maximilian Fels; Shihua He; Rebekah M. James; Marc Antoine de La Vega; Wenjun Zhu; Russell R. Bakken; Eileen Goodwin; Hannah L. Turner; Rohit K. Jangra; Larry Zeitlin; Xiangguo Qiu; Jonathan R. Lai; Laura M. Walker; Andrew B. Ward; John M. Dye; Kartik Chandran; Zachary A. Bornholdt

Experimental monoclonal antibody (mAb) therapies have shown promise for treatment of lethal Ebola virus (EBOV) infections, but their species-specific recognition of the viral glycoprotein (GP) has limited their use against other divergent ebolaviruses associated with human disease. Here, we mined the human immune response to natural EBOV infection and identified mAbs with exceptionally potent pan-ebolavirus neutralizing activity and protective efficacy against three virulent ebolaviruses. These mAbs recognize an inter-protomer epitope in the GP fusion loop, a critical and conserved element of the viral membrane fusion machinery, and neutralize viral entry by targeting a proteolytically primed, fusion-competent GP intermediate (GPCL) generated in host cell endosomes. Only a few somatic hypermutations are required for broad antiviral activity, and germline-approximating variants display enhanced GPCL recognition, suggesting that such antibodies could be elicited more efficiently with suitably optimized GP immunogens. Our findings inform the development of both broadly effective immunotherapeutics and vaccines against filoviruses.


Mbio | 2015

Niemann-Pick C1 Is Essential for Ebolavirus Replication and Pathogenesis In Vivo

Andrew S. Herbert; Cristin Davidson; Ana I. Kuehne; Russell R. Bakken; Stephen Braigen; Kathryn E. Gunn; Sean P. J. Whelan; Thijn R. Brummelkamp; Nancy A. Twenhafel; Kartik Chandran; Steven U. Walkley; John M. Dye

ABSTRACT Recent work demonstrated that the Niemann-Pick C1 (NPC1) protein is an essential entry receptor for filoviruses. While previous studies focused on filovirus entry requirements of NPC1 in vitro, its roles in filovirus replication and pathogenesis in vivo remain unclear. Here, we evaluated the importance of NPC1, and its partner in cholesterol transport, NPC2, by using a mouse model of Ebolavirus (EBOV) disease. We found that, whereas wild-type mice had high viral loads and succumbed to EBOV infection, Npc1−/− mice were entirely free of viral replication and completely protected from EBOV disease. Interestingly, Npc1+/− mice transiently developed high levels of viremia, but were nevertheless substantially protected from EBOV challenge. We also found Npc2−/− mice to be fully susceptible to EBOV infection, while Npc1−/− mice treated to deplete stored lysosomal cholesterol remained completely resistant to EBOV infection. These results provide mechanistic evidence that NPC1 is directly required for EBOV infection in vivo, with little or no role for NPC1/NPC2-dependent cholesterol transport. Finally, we assessed the in vivo antiviral efficacies of three compounds known to inhibit NPC1 function or NPC1-glycoprotein binding in vitro. Two compounds reduced viral titers in vivo and provided a modest, albeit not statistically significant, degree of protection. Taken together, our results show that NPC1 is critical for replication and pathogenesis in animals and is a bona fide target for development of antifilovirus therapeutics. Additionally, our findings with Npc1+/− mice raise the possibility that individuals heterozygous for NPC1 may have a survival advantage in the face of EBOV infection. IMPORTANCE Researchers have been searching for an essential filovirus receptor for decades, and numerous candidate receptors have been proposed. However, none of the proposed candidate receptors has proven essential in all in vitro scenarios, nor have they proven essential when evaluated using animal models. In this report, we provide the first example of a knockout mouse that is completely refractory to EBOV infection, replication, and disease. The findings detailed here provide the first critical in vivo data illustrating the absolute requirement of NPC1 for filovirus infection in mice. Our work establishes NPC1 as a legitimate target for the development of anti-EBOV therapeutics. However, the limited success of available NPC1 inhibitors to protect mice from EBOV challenge highlights the need for new molecules or approaches to target NPC1 in vivo. Researchers have been searching for an essential filovirus receptor for decades, and numerous candidate receptors have been proposed. However, none of the proposed candidate receptors has proven essential in all in vitro scenarios, nor have they proven essential when evaluated using animal models. In this report, we provide the first example of a knockout mouse that is completely refractory to EBOV infection, replication, and disease. The findings detailed here provide the first critical in vivo data illustrating the absolute requirement of NPC1 for filovirus infection in mice. Our work establishes NPC1 as a legitimate target for the development of anti-EBOV therapeutics. However, the limited success of available NPC1 inhibitors to protect mice from EBOV challenge highlights the need for new molecules or approaches to target NPC1 in vivo.


Science | 2016

A "Trojan horse" bispecific antibody strategy for broad protection against ebolaviruses.

Anna Z. Wec; Elisabeth K. Nyakatura; Andrew S. Herbert; Katie A. Howell; Frederick W. Holtsberg; Russell R. Bakken; Eva Mittler; John R. Christin; Sergey Shulenin; Rohit K. Jangra; Sushma Bharrhan; Ana I. Kuehne; Zachary A. Bornholdt; Andrew I. Flyak; Erica Ollmann Saphire; James E. Crowe; M. Javad Aman; John M. Dye; Jonathan R. Lai; Kartik Chandran

Treating Ebola with a Trojan horse The recent major Ebola virus outbreak in West Africa high-lighted the need for effective therapeutics against this and other filoviruses. Neutralizing ebolaviruses with antibodies is a challenge because the viruses bind their entry receptor, NPC1, inside the cell within endosomes rather than on the cell surface. Furthermore, enzymes in endosomes cleave the Ebola virus surface glycoprotein (GP) to reveal its receptor binding site. Wec et al. now report a bispecific antibody strategy targeting all known ebolaviruses that overcomes this problem (see the Perspective by Labrijn and Parren). They coupled an antibody specific for a conserved, surface-exposed epitope of GP to antibodies that recognize either NPC1 or the NPC1 binding site on GP. Treating mice therapeutically with these antibodies allowed them to survive otherwise lethal ebolavirus infection. Science, this issue p. 350; see also p. 284 Bispecific antibodies show therapeutic efficacy against ebolaviruses in mice. There is an urgent need for monoclonal antibody (mAb) therapies that broadly protect against Ebola virus and other filoviruses. The conserved, essential interaction between the filovirus glycoprotein, GP, and its entry receptor Niemann-Pick C1 (NPC1) provides an attractive target for such mAbs but is shielded by multiple mechanisms, including physical sequestration in late endosomes. Here, we describe a bispecific-antibody strategy to target this interaction, in which mAbs specific for NPC1 or the GP receptor–binding site are coupled to a mAb against a conserved, surface-exposed GP epitope. Bispecific antibodies, but not parent mAbs, neutralized all known ebolaviruses by coopting viral particles themselves for endosomal delivery and conferred postexposure protection against multiple ebolaviruses in mice. Such “Trojan horse” bispecific antibodies have potential as broad antifilovirus immunotherapeutics.


Vaccine | 2010

Comparison of the immunological responses and efficacy of gamma-irradiated V3526 vaccine formulations against subcutaneous and aerosol challenge with Venezuelan equine encephalitis virus subtype IAB

Shannon S. Martin; Russell R. Bakken; Cathleen M. Lind; Patricia Garcia; Erin Jenkins; Pamela J. Glass; Michael D. Parker; Mary Kate Hart; Donald L. Fine

We recently developed a gamma-irradiation method to inactivate V3526, a live-attenuated Venezuelan equine encephalitis virus (VEEV) vaccine candidate. Dosage and schedule studies were conducted to evaluate the immunogenicity and efficacy of gamma-irradiated V3526 (gV3526). Subcutaneous (SC) and low dosage intramuscular (IM) administration of gV3526 were highly effective in protecting mice against a SC challenge with VEEV IA/B Trinidad Donkey strain, but not against an equivalent aerosol challenge. More robust immune responses and increased protective efficacy were noted when the IM dosage of gV3526 was increased. IM administration of gV3526 formulated with either CpG or CpG plus Alhydrogel further augmented the immune response in mice and resulted in 100% protection against aerosol challenge.


Vaccine | 2009

Directed molecular evolution improves the immunogenicity and protective efficacy of a Venezuelan equine encephalitis virus DNA vaccine

Lesley C. Dupuy; Christopher P. Locher; Madan M. Paidhungat; Michelle J. Richards; Cathleen M. Lind; Russell R. Bakken; Michael D. Parker; Robert G. Whalen; Connie S. Schmaljohn

We employed directed molecular evolution to improve the cross-reactivity and immunogenicity of the Venezuelan equine encephalitis virus (VEEV) envelope glycoproteins. The DNA encoding the E1 and E2 proteins from VEEV subtypes IA/B and IE, Mucambo virus (MUCV), and eastern and western equine encephalitis viruses (EEEV and WEEV) were recombined in vitro to create libraries of chimeric genes expressing variant envelope proteins. ELISAs specific for all five parent viruses were used in high-throughput screening to identify those recombinant DNAs that demonstrated cross-reactivity to VEEV, MUCV, EEEV, and WEEV after administration as plasmid vaccines in mice. Selected variants were then used to vaccinate larger cohorts of mice and their sera were assayed by both ELISA and by plaque reduction neutralization test (PRNT). Representative variants from a library in which the E1 gene from VEEV IA/B was held constant and only the E2 genes of the five parent viruses were recombined elicited significantly increased neutralizing antibody titers to VEEV IA/B compared to the parent DNA vaccine and provided improved protection against aerosol VEEV IA/B challenge. Our results indicate that it is possible to improve the immunogenicity and protective efficacy of alphavirus DNA vaccines using directed molecular evolution.


PLOS ONE | 2012

Designing and Testing Broadly-Protective Filoviral Vaccines Optimized for Cytotoxic T-Lymphocyte Epitope Coverage

Paul W. Fenimore; Majidat Muhammad; William Fischer; Brian T. Foley; Russell R. Bakken; James R. Thurmond; Karina Yusim; Hyejin Yoon; Michael D. Parker; Mary Kate Hart; John M. Dye; Bette T. Korber; Carla Kuiken

We report the rational design and in vivo testing of mosaic proteins for a polyvalent pan-filoviral vaccine using a computational strategy designed for the Human Immunodeficiency Virus type 1 (HIV-1) but also appropriate for Hepatitis C virus (HCV) and potentially other diverse viruses. Mosaics are sets of artificial recombinant proteins that are based on natural proteins. The recombinants are computationally selected using a genetic algorithm to optimize the coverage of potential cytotoxic T lymphocyte (CTL) epitopes. Because evolutionary history differs markedly between HIV-1 and filoviruses, we devised an adapted computational technique that is effective for sparsely sampled taxa; our first significant result is that the mosaic technique is effective in creating high-quality mosaic filovirus proteins. The resulting coverage of potential epitopes across filovirus species is superior to coverage by any natural variants, including current vaccine strains with demonstrated cross-reactivity. The mosaic cocktails are also robust: mosaics substantially outperformed natural strains when computationally tested against poorly sampled species and more variable genes. Furthermore, in a computational comparison of cross-reactive potential a design constructed prior to the Bundibugyo outbreak performed nearly as well against all species as an updated design that included Bundibugyo. These points suggest that the mosaic designs would be more resilient than natural-variant vaccines against future Ebola outbreaks dominated by novel viral variants. We demonstrate in vivo immunogenicity and protection against a heterologous challenge in a mouse model. This design work delineates the likely requirements and limitations on broadly-protective filoviral CTL vaccines.


The Journal of Infectious Diseases | 2015

Interferon α/β Receptor–Deficient Mice as a Model for Ebola Virus Disease

Jennifer M. Brannan; Jeffery W. Froude; Laura I. Prugar; Russell R. Bakken; Samantha E. Zak; Sharon P. Daye; Catherine E. Wilhelmsen; John M. Dye

A major obstacle in ebolavirus research is the lack of a small-animal model for Sudan virus (SUDV), as well as other wild-type (WT) ebolaviruses. Here, we expand on research by Bray and by Lever et al suggesting that WT ebolaviruses are pathogenic in mice deficient for the type 1 interferon (IFN) α/β receptor (IFNα/βR-/-). We examined the disease course of several WT ebolaviruses: Boneface (SUDV/Bon) and Gulu variants of SUDV, Ebola virus (EBOV), Bundibugyo virus (BDBV), Taï Forest virus, and Reston virus (RESTV). We determined that exposure to WT SUDV or EBOV results in reproducible signs of disease in IFNα/βR-/- mice, as measured by weight loss and partial lethality. Vaccination with the SUDV or EBOV glycoprotein (GP)-expressing Venezuelan equine encephalitis viral replicon particle vaccine protected these mice from SUDV/Bon and EBOV challenge, respectively. Treatment with SUDV- or EBOV-specific anti-GP antibodies protected mice from challenge when delivered 1-3 days after infection. Serial sampling experiments revealed evidence of disseminated intravascular coagulation in the livers of mice infected with the Boneface variant of SUDV, EBOV, and BDBV. Taken together, these data solidify the IFNα/βR-/- mouse as an important and useful model for the study of WT EBOV disease.

Collaboration


Dive into the Russell R. Bakken's collaboration.

Top Co-Authors

Avatar

John M. Dye

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Mary Kate Hart

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Cathleen M. Lind

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Kartik Chandran

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Samantha E. Zak

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Ana I. Kuehne

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Pamela J. Glass

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Andrew S. Herbert

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Michael D. Parker

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Anna Z. Wec

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge