Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana I. Robles is active.

Publication


Featured researches published by Ana I. Robles.


Nature Reviews Cancer | 2010

Genetic variation in microRNA networks: the implications for cancer research.

Bríd M. Ryan; Ana I. Robles; Curtis C. Harris

Many studies have highlighted the role that microRNAs have in physiological processes and how their deregulation can lead to cancer. More recently, it has been proposed that the presence of single nucleotide polymorphisms in microRNA genes, their processing machinery and target binding sites affects cancer risk, treatment efficacy and patient prognosis. In reviewing this new field of cancer biology, we describe the methodological approaches of these studies and make recommendations for which strategies will be most informative in the future.


Nature Medicine | 2003

Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning

Ye Qh; Lun Xiu Qin; Marshonna Forgues; Ping He; Jin Woo Kim; Amy C. Peng; Richard Simon; Yan Li; Ana I. Robles; Yidong Chen; Zeng Chen Ma; Zhi Quan Wu; Ye Sl; Yin Kun Liu; Zhao-You Tang; Xin Wei Wang

Hepatocellular carcinoma (HCC) is one of the most common and aggressive human malignancies. Its high mortality rate is mainly a result of intra-hepatic metastases. We analyzed the expression profiles of HCC samples without or with intra-hepatic metastases. Using a supervised machine-learning algorithm, we generated for the first time a molecular signature that can classify metastatic HCC patients and identified genes that were relevant to metastasis and patient survival. We found that the gene expression signature of primary HCCs with accompanying metastasis was very similar to that of their corresponding metastases, implying that genes favoring metastasis progression were initiated in the primary tumors. Osteopontin, which was identified as a lead gene in the signature, was over-expressed in metastatic HCC; an osteopontin-specific antibody effectively blocked HCC cell invasion in vitro and inhibited pulmonary metastasis of HCC cells in nude mice. Thus, osteopontin acts as both a diagnostic marker and a potential therapeutic target for metastatic HCC.


Cancer Research | 2004

p53-Induced Up-Regulation of MnSOD and GPx but not Catalase Increases Oxidative Stress and Apoptosis

S. Perwez Hussain; Paul Amstad; Peijun He; Ana I. Robles; Shawn E. Lupold; Ichiro Kaneko; Masato Ichimiya; Sagar Sengupta; Leah E. Mechanic; Shu Okamura; Lorne J. Hofseth; Matthew Moake; Makoto Nagashima; Kathleen Forrester; Curtis C. Harris

p53-mediated apoptosis may involve the induction of redox-controlling genes, resulting in the production of reactive oxygen species. Microarray expression analysis of doxorubicin exposed, related human lymphoblasts, p53 wild-type (WT) Tk6, and p53 mutant WTK1 identified the p53-dependent up-regulation of manganese superoxide dismutase (MnSOD) and glutathione peroxidase 1 (GPx). Consensus p53 binding sequences were identified in human MnSOD and GPx promoter regions. A 3-fold increase in the MnSOD promoter activity was observed after the induction of p53 in Li-Fraumeni syndrome (LFS) fibroblast, TR9-7, expressing p53 under the control of a tetracycline-regulated promoter. An increased protein expression of endogenous MnSOD and GPx also positively correlated with the level of p53 induction in TR9-7 cells. However, catalase (CAT) protein expression remained unaltered after p53 induction. We also examined the expression of MnSOD, GPx, and CAT in a panel of normal or LFS fibroblasts, containing either WT or mutant p53. We found increased MnSOD enzymatic activity, MnSOD mRNA expression, and MnSOD and GPx protein in LFS fibroblasts carrying a WT p53 allele when compared with homozygous mutant p53 isogenic cells. The CAT protein level was unchanged in these cells. We observed both the release of cytochrome C and Ca2+ from the mitochondria into the cytoplasm and an increased frequency of apoptotic cells after p53 induction in the TR9-7 cells that coincided with an increased expression of MnSOD and GPx, and the level of reactive oxygen species. The increase in apoptosis was reduced by the antioxidant N-acetylcysteine. These results identify a novel mechanism of p53-dependent apoptosis in which p53-mediated up-regulation of MnSOD and GPx, but not CAT, produces an imbalance in antioxidant enzymes and oxidative stress.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models

Eloisi Caldas-Lopes; Leandro Cerchietti; James H. Ahn; Cristina C. Clement; Ana I. Robles; Anna Rodina; Kamalika Moulick; Tony Taldone; Alexander Gozman; Yunke Guo; Nian Wu; Elisa de Stanchina; Julie White; Steven S. Gross; Yuliang Ma; Lyuba Varticovski; Ari Melnick; Gabriela Chiosis

Triple-negative breast cancers (TNBCs) are defined by a lack of expression of estrogen, progesterone, and HER2 receptors. Because of the absence of identified targets and targeted therapies, and due to a heterogeneous molecular presentation, treatment guidelines for patients with TNBC include only conventional chemotherapy. Such treatment, while effective for some, leaves others with high rates of early relapse and is not curative for any patient with metastatic disease. Here, we demonstrate that these tumors are sensitive to the heat shock protein 90 (Hsp90) inhibitor PU-H71. Potent and durable anti-tumor effects in TNBC xenografts, including complete response and tumor regression, without toxicity to the host are achieved with this agent. Notably, TNBC tumors respond to retreatment with PU-H71 for several cycles extending for over 5 months without evidence of resistance or toxicity. Through a proteomics approach, we show that multiple oncoproteins involved in tumor proliferation, survival, and invasive potential are in complex with PU-H71-bound Hsp90 in TNBC. PU-H71 induces efficient and sustained downregulation and inactivation, both in vitro and in vivo, of these proteins. Among them, we identify downregulation of components of the Ras/Raf/MAPK pathway and G2-M phase to contribute to its anti-proliferative effect, degradation of activated Akt and Bcl-xL to induce apoptosis, and inhibition of activated NF-κB, Akt, ERK2, Tyk2, and PKC to reduce TNBC invasive potential. The results identify Hsp90 as a critical and multimodal target in this most difficult to treat breast cancer subtype and support the use of the Hsp90 inhibitor PU-H71 for clinical trials involving patients with TNBC.


Cold Spring Harbor Perspectives in Biology | 2010

Clinical Outcomes and Correlates of TP53 Mutations and Cancer

Ana I. Robles; Curtis C. Harris

The initial observation that p53 accumulation might serve as a surrogate biomarker for TP53 mutation has been the cornerstone for vast translational efforts aimed at validating its clinical use for the diagnosis, prognosis, and treatment of cancer. Early on, it was realized that accurate evaluation of p53 status and function could not be achieved through protein-expression analysis only. As our understanding of the p53 pathway has evolved and more sophisticated methods for assessment of p53 functional integrity have become available, the clinical and molecular epidemiological implications of p53 abnormalities in cancers are being revealed. They include diagnostic testing for germline p53 mutations, and the assessment of selected p53 mutations as biomarkers of carcinogen exposure and cancer risk and prognosis. Here, we describe the strengths and limitations of the most frequently used techniques for determination of p53 status in tumors, as well as the most remarkable latest findings relating to its clinical and epidemiological value.


Nature Medicine | 2009

A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6–dependent B cell lymphomas

Leandro Cerchietti; Eloisi Caldas Lopes; Shao Ning Yang; Katerina Hatzi; Karen L. Bunting; Lucas Tsikitas; Alka Mallik; Ana I. Robles; Jennifer Walling; Lyuba Varticovski; Rita Shaknovich; Kapil N. Bhalla; Gabriela Chiosis; Ari Melnick

We report that heat shock protein 90 (Hsp90) inhibitors selectively kill diffuse large B cell lymphomas (DLBCLs) that depend on the BCL-6 transcriptional repressor. We found that endogenous Hsp90 interacts with BCL-6 in DLBCL cells and can stabilize BCL-6 mRNA and protein. Hsp90 formed a complex with BCL-6 at its target promoters, and Hsp90 inhibitors derepressed BCL-6 target genes. A stable mutant of BCL-6 rescued DLBCL cells from Hsp90 inhibitor–induced apoptosis. BCL-6 and Hsp90 were almost invariantly coexpressed in the nuclei of primary DLBCL cells, suggesting that their interaction is relevant in this disease. We examined the pharmacokinetics, toxicity and efficacy of PU-H71, a recently developed purine-derived Hsp90 inhibitor. PU-H71 preferentially accumulated in lymphomas compared to normal tissues and selectively suppressed BCL-6–dependent DLBCLs in vivo, inducing reactivation of key BCL-6 target genes and apoptosis. PU-H71 also induced cell death in primary human DLBCL specimens.


Oncogene | 2002

The p53 network in lung carcinogenesis

Ana I. Robles; Steven P. Linke; Curtis C. Harris

The p53 tumor suppressor gene lies at the crossroads of multiple cellular response pathways that control a cells fate in response to endogenous or exogenous stresses. Positive and negative regulatory loops both upstream and downstream of p53 cooperate to finely tune its functions as a transcription factor, a DNA damage sensor, and possibly, a protein-assembly scaffold. Through this plethora of activities, p53 is a major determinant of cell survival and a safeguard against genetic instability. Functional inactivation of p53 pathways through genetic and epigenetic events affecting the p53 gene itself and/or its interacting partners occur with a high frequency in lung cancer. The p53 mutational spectrum provides molecular evidence of the etiology of lung cancer and supports abundant epidemiological data indicating the role of tobacco smoke in the causation of this disease.


Journal of Cell Biology | 2004

Functional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest

Sagar Sengupta; Ana I. Robles; Steven P. Linke; Natasha Sinogeeva; Ran Zhang; Remy Pedeux; Irene M. Ward; Arkady Celeste; André Nussenzweig; Junjie Chen; Thanos D. Halazonetis; Curtis C. Harris

Blooms syndrome is a rare autosomal recessive genetic disorder characterized by chromosomal aberrations, genetic instability, and cancer predisposition, all of which may be the result of abnormal signal transduction during DNA damage recognition. Here, we show that BLM is an intermediate responder to stalled DNA replication forks. BLM colocalized and physically interacted with the DNA damage response proteins 53BP1 and H2AX. Although BLM facilitated physical interaction between p53 and 53BP1, 53BP1 was required for efficient accumulation of both BLM and p53 at the sites of stalled replication. The accumulation of BLM/53BP1 foci and the physical interaction between them was independent of γ-H2AX. The active Chk1 kinase was essential for both the accurate focal colocalization of 53BP1 with BLM and the consequent stabilization of BLM. Once the ATR/Chk1- and 53BP1-mediated signal from replicational stress is received, BLM functions in multiple downstream repair processes, thereby fulfilling its role as a caretaker tumor suppressor.


Cancer Research | 2007

Novel Indenoisoquinolines NSC 725776 and NSC 724998 Produce Persistent Topoisomerase I Cleavage Complexes and Overcome Multidrug Resistance

Smitha Antony; Keli Agama; Ze-Hong Miao; Kazutaka Takagi; Mollie H. Wright; Ana I. Robles; Lyuba Varticovski; Muthukaman Nagarajan; Andrew Morrell; Mark Cushman; Yves Pommier

Camptothecin (CPT) derivatives are effective anticancer drugs, especially against solid tumors. As CPTs are chemically unstable and have clinical limitations, we have synthesized indenoisoquinolines as novel topoisomerase I (Top1) inhibitors. We presently report two indenoisoquinoline derivatives, NSC 725776 and NSC 724998, which have been selected for therapeutic development. Both are potent Top1 inhibitors and induce Top1 cleavage at unique genomic positions compared with CPT. Consistent with Top1 poisoning, protein-linked DNA breaks were detected in cells treated with NSC 725776 and NSC 724998 at nanomolar concentrations. Those drug-induced protein-linked DNA breaks persisted longer after drug removal than those produced by CPT. Studies in human cells in culture show that NSC 725776 and NSC 724998 exert antiproliferative activity at submicromolar concentrations. Furthermore, NSC 725776 and NSC 724998 show cross-resistance in cells deficient or silenced for Top1, which is consistent with their selective Top1 targeting. Similar to other known Top1 inhibitors, NSC 725776-treated and NSC 724998-treated cells show an arrest of cell cycle progression in both S and G(2)-M and a dependence on functional p53 for their cytotoxicity. Dose-dependent gamma-H2AX foci formation was readily observed in cells treated with NSC 725776 and NSC 724998. These gamma-H2AX foci were detectable at pharmacologically relevant doses for up to 24 h and thus could be used as biomarkers for clinical trials (phase 0).


Proceedings of the National Academy of Sciences of the United States of America | 2010

Microenvironmental modulation of asymmetric cell division in human lung cancer cells

Sharon R. Pine; Bríd M. Ryan; Lyuba Varticovski; Ana I. Robles; Curtis C. Harris

Normal tissue homeostasis is maintained through asymmetric cell divisions that produce daughter cells with differing self-renewal and differentiation potentials. Certain tumor cell subfractions can self-renew and repopulate the heterogeneous tumor bulk, suggestive of asymmetric cell division, but an equally plausible explanation is that daughter cells of a symmetric division subsequently adopt differing cell fates. Cosegregation of template DNA during mitosis is one mechanism by which cellular components are segregated asymmetrically during cell division in fibroblast, muscle, mammary, intestinal, and neural cells. Asymmetric cell division of template DNA in tumor cells has remained elusive, however. Through pulse-chase experiments with halogenated thymidine analogs, we determined that a small population of cells within human lung cancer cell lines and primary tumor cell cultures asymmetrically divided their template DNA, which could be visualized in single cells and in real time. Template DNA cosegregation was enhanced by cell–cell contact. Its frequency was density-dependent and modulated by environmental changes, including serum deprivation and hypoxia. In addition, we found that isolated CD133+ lung cancer cells were capable of tumor cell repopulation. Strikingly, during cell division, CD133 cosegregated with the template DNA, whereas the differentiation markers prosurfactant protein-C and pan-cytokeratins were passed to the opposing daughter cell, demonstrating that segregation of template DNA correlates with lung cancer cell fate. Our results demonstrate that human lung tumor cell fate decisions may be regulated during the cell division process. The characterization and modulation of asymmetric cell division in lung cancer can provide insight into tumor initiation, growth, and maintenance.

Collaboration


Dive into the Ana I. Robles's collaboration.

Top Co-Authors

Avatar

Curtis C. Harris

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bríd M. Ryan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elise D. Bowman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lyuba Varticovski

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Aaron J. Schetter

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Takashi Kohno

National Cancer Research Institute

View shared research outputs
Top Co-Authors

Avatar

Andrew C. McClary

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Jun Yokota

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mohammed A. Khan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Majda Haznadar

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge