Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lyuba Varticovski is active.

Publication


Featured researches published by Lyuba Varticovski.


Nature Genetics | 2004

The Knockout Mouse Project

Christopher P. Austin; James F. Battey; Allan Bradley; Maja Bucan; Mario R. Capecchi; Francis S. Collins; William F. Dove; Geoffrey M. Duyk; Susan M. Dymecki; Janan T. Eppig; Franziska Grieder; Nathaniel Heintz; Geoff Hicks; Thomas R. Insel; Alexandra L. Joyner; Beverly H. Koller; K. C. Kent Lloyd; Terry Magnuson; Mark Moore; Andras Nagy; Jonathan D. Pollock; Allen D. Roses; Arthur T. Sands; Brian Seed; William C. Skarnes; Jay Snoddy; Philippe Soriano; D. Stewart; Francis Stewart; Bruce Stillman

Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.


Breast Cancer Research | 2008

Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics

Mollie H Wright; Anna Maria Calcagno; Crystal D. Salcido; Marisa D Carlson; Suresh V. Ambudkar; Lyuba Varticovski

IntroductionWhether cancer stem cells occur in BRCA1-associated breast cancer and contribute to therapeutic response is not known.MethodsWe generated and characterized 16 cell lines from five distinct Brca1deficient mouse mammary tumors with respect to their cancer stem cell characteristics.ResultsAll cell lines derived from one tumor included increased numbers of CD44+/CD24- cells, which were previously identified as human breast cancer stem cells. All cell lines derived from another mammary tumor exhibited low levels of CD44+/CD24- cells, but they harbored 2% to 5.9% CD133+ cells, which were previously associated with cancer stem cells in other human and murine tumors. When plated in the absence of attachment without presorting, only those cell lines that were enriched in either stem cell marker formed spheroids, which were further enriched in cells expressing the respective cancer stem cell marker. In contrast, cells sorted for CD44+/CD24- or CD133+ markers lost their stem cell phenotype when cultured in monolayers. As few as 50 to 100 CD44+/CD24- or CD133+ sorted cells rapidly formed tumors in nonobese diabetic/severe combined immunodeficient mice, whereas 50-fold to 100-fold higher numbers of parental or stem cell depleted cells were required to form few, slow-growing tumors. Expression of stem cell associated genes, including Oct4, Notch1, Aldh1, Fgfr1, and Sox1, was increased in CD44+/CD24- and CD133+ cells. In addition, cells sorted for cancer stem cell markers and spheroid-forming cells were significantly more resistant to DNA-damaging drugs than were parental or stem cell depleted populations, and they were sensitized to the drugs by the heat shock protein-90 inhibitor 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride).ConclusionBrca1-deficient mouse mammary tumors harbor heterogeneous cancer stem cell populations, and CD44+/CD24- cells represent a population that correlates with human breast cancer stem cells.


Journal of Clinical Investigation | 1996

Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression.

Edi Brogi; Gina C. Schatteman; Tiangen Wu; Elizabeth A. Kim; Lyuba Varticovski; Bruce Keyt; Jeffrey M. Isner

Vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF), an endothelial cell (EC)-specific mitogen, stimulates angiogenesis in vivo, particularly in ischemic regions. VEGF/VPF expression by cells of hypoxic tissues coincides with expression of its two receptors, KDR and flt-1, by ECs in the same tissues. We investigated whether hypoxia or hypoxia-dependent conditions operate in coordinating this phenomenon. Human umbilical vein and microvascular ECs were exposed to direct hypoxia or to medium conditioned (CM) by myoblasts maintained in hypoxia for 4 d. Control ECs were maintained in normoxia or normoxia-CM. Binding of 125I-VEGF to ECs was then evaluated. Hypoxic treatment of ECs had no effect on 125I-VEGF binding. However, treatment of ECs with hypoxia-CM produced a threefold increase in 125I-VEGF binding, with peak at 24 h (P < 0.001, ANOVA). Scatchard analysis disclosed that increased binding was due to a 13-fold increase in KDR receptors/cell, with no change in KDR affinity (Kd = 260 +/- 51 pM, normoxia-CM versus Kd = 281 +/- 94 pM, hypoxia-CM) and no change in EC number (35.6 +/- 5.9 x 10(3) ECs/cm2, normoxia-CM versus 33.5 +/- 5.5 x 10(3) ECs/cm2, hypoxia-CM). Similar results were obtained using CM from hypoxic smooth muscle cells. KDR upregulation was not prevented by addition to the hypoxia-CM of neutralizing antibodies against VEGF, tumor necrosis factor-alpha, transforming growth factor beta 1 or basic fibroblast growth factor. Similarly, addition of VEGF or lactic acid to the normoxia-CM had no effect on VEGF binding. We conclude that mechanism(s) initiated by hypoxia can induce KDR receptor upregulation in ECs. Hypoxic cells, normal or neoplastic, not only can produce VEGF/VPF, but can also modulate its effects via paracrine induction of VEGF/VPF receptors in ECs.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models

Eloisi Caldas-Lopes; Leandro Cerchietti; James H. Ahn; Cristina C. Clement; Ana I. Robles; Anna Rodina; Kamalika Moulick; Tony Taldone; Alexander Gozman; Yunke Guo; Nian Wu; Elisa de Stanchina; Julie White; Steven S. Gross; Yuliang Ma; Lyuba Varticovski; Ari Melnick; Gabriela Chiosis

Triple-negative breast cancers (TNBCs) are defined by a lack of expression of estrogen, progesterone, and HER2 receptors. Because of the absence of identified targets and targeted therapies, and due to a heterogeneous molecular presentation, treatment guidelines for patients with TNBC include only conventional chemotherapy. Such treatment, while effective for some, leaves others with high rates of early relapse and is not curative for any patient with metastatic disease. Here, we demonstrate that these tumors are sensitive to the heat shock protein 90 (Hsp90) inhibitor PU-H71. Potent and durable anti-tumor effects in TNBC xenografts, including complete response and tumor regression, without toxicity to the host are achieved with this agent. Notably, TNBC tumors respond to retreatment with PU-H71 for several cycles extending for over 5 months without evidence of resistance or toxicity. Through a proteomics approach, we show that multiple oncoproteins involved in tumor proliferation, survival, and invasive potential are in complex with PU-H71-bound Hsp90 in TNBC. PU-H71 induces efficient and sustained downregulation and inactivation, both in vitro and in vivo, of these proteins. Among them, we identify downregulation of components of the Ras/Raf/MAPK pathway and G2-M phase to contribute to its anti-proliferative effect, degradation of activated Akt and Bcl-xL to induce apoptosis, and inhibition of activated NF-κB, Akt, ERK2, Tyk2, and PKC to reduce TNBC invasive potential. The results identify Hsp90 as a critical and multimodal target in this most difficult to treat breast cancer subtype and support the use of the Hsp90 inhibitor PU-H71 for clinical trials involving patients with TNBC.


Molecular and Cellular Biology | 2008

The Chaperone-Mediated Autophagy Receptor Organizes in Dynamic Protein Complexes at the Lysosomal Membrane

Urmi Bandyopadhyay; Susmita Kaushik; Lyuba Varticovski; Ana Maria Cuervo

ABSTRACT Chaperone-mediated autophagy (CMA) is a selective type of autophagy by which specific cytosolic proteins are sent to lysosomes for degradation. Substrate proteins bind to the lysosomal membrane through the lysosome-associated membrane protein type 2A (LAMP-2A), one of the three splice variants of the lamp2 gene, and this binding is limiting for their degradation via CMA. However, the mechanisms of substrate binding and uptake remain unknown. We report here that LAMP-2A organizes at the lysosomal membrane into protein complexes of different sizes. The assembly and disassembly of these complexes are a very dynamic process directly related to CMA activity. Substrate proteins only bind to monomeric LAMP-2A, while the efficient translocation of substrates requires the formation of a particular high-molecular-weight LAMP-2A complex. The two major chaperones related to CMA, hsc70 and hsp90, play critical roles in the functional dynamics of the LAMP-2A complexes at the lysosomal membrane. Thus, we have identified a novel function for hsc70 in the disassembly of LAMP-2A from these complexes, whereas the presence of lysosome-associated hsp90 is essential to preserve the stability of LAMP-2A at the lysosomal membrane.


Journal of the National Cancer Institute | 2010

Prolonged Drug Selection of Breast Cancer Cells and Enrichment of Cancer Stem Cell Characteristics

Anna Maria Calcagno; Crystal D. Salcido; Jean-Pierre Gillet; Chung-Pu Wu; Jennifer M. Fostel; Melanie D. Mumau; Michael M. Gottesman; Lyuba Varticovski; Suresh V. Ambudkar

BACKGROUND Cancer stem cells are presumed to have virtually unlimited proliferative and self-renewal abilities and to be highly resistant to chemotherapy, a feature that is associated with overexpression of ATP-binding cassette transporters. We investigated whether prolonged continuous selection of cells for drug resistance enriches cultures for cancer stem-like cells. METHODS Cancer stem cells were defined as CD44+/CD24⁻ cells that could self-renew (ie, generate cells with the tumorigenic CD44+/CD24⁻ phenotype), differentiate, invade, and form tumors in vivo. We used doxorubicin-selected MCF-7/ADR cells, weakly tumorigenic parental MCF-7 cells, and MCF-7/MDR, an MCF-7 subline with forced expression of ABCB1 protein. Cells were examined for cell surface markers and side-population fractions by microarray and flow cytometry, with in vitro invasion assays, and for ability to form mammospheres. Xenograft tumors were generated in mice to examine tumorigenicity (n = 52). The mRNA expression of multidrug resistance genes was examined in putative cancer stem cells and pathway analysis of statistically significantly differentially expressed genes was performed. All statistical tests were two-sided. RESULTS Pathway analysis showed that MCF-7/ADR cells express mRNAs from ABCB1 and other genes also found in breast cancer stem cells (eg, CD44, TGFB1, and SNAI1). MCF-7/ADR cells were highly invasive, formed mammospheres, and were tumorigenic in mice. In contrast to parental MCF-7 cells, more than 30% of MCF-7/ADR cells had a CD44+/CD24⁻ phenotype, could self-renew, and differentiate (ie, produce CD44+/CD24⁻ and CD44+/CD24+ cells) and overexpressed various multidrug resistance-linked genes (including ABCB1, CCNE1, and MMP9). MCF-7/ADR cells were statistically significantly more invasive in Matrigel than parental MCF-7 cells (MCF-7 cells = 0.82 cell per field and MCF-7/ADR = 7.51 cells per field, difference = 6.69 cells per field, 95% confidence interval = 4.82 to 8.55 cells per field, P < .001). No enrichment in the CD44+/CD24⁻ or CD133+ population was detected in MCF-7/MDR. CONCLUSION The cell population with cancer stem cell characteristics increased after prolonged continuous selection for doxorubicin resistance.


Molecular and Cellular Biology | 1991

Activation of phosphatidylinositol 3-kinase in cells expressing abl oncogene variants.

Lyuba Varticovski; George Q. Daley; Peter K. Jackson; David Baltimore; Lewis C. Cantley

A phosphoinositide kinase specific for the D-3 position of the inositol ring, phosphatidylinositol (PI) 3-kinase, associates with activated receptors for platelet-derived growth factor, insulin, and colony-stimulating factor 1, with products of the oncogenes src, fms, yes, crk, and with polyomavirus middle T antigen. Efficient fibroblast transformation by proteins of the abl and src oncogene families requires activation of their protein-tyrosine kinase activity and membrane association via an amino-terminal myristoylation. We have demonstrated that the PI 3-kinase directly associates with autophosphorylated, activated protein-tyrosine kinase variants of the abl protein. In vivo, this association leads to accumulation of the highly phosphorylated products of PI 3-kinase, PI-3,4-bisphosphate and PI-3,4,5-trisphosphate, only in myristoylated, transforming abl protein variants. Myristoylation thus appears to be required to recruit PI 3-kinase activity to the plasma membrane for in vivo activation and correlates with the mitogenicity of the abl protein variants.


Nature Medicine | 2009

A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6–dependent B cell lymphomas

Leandro Cerchietti; Eloisi Caldas Lopes; Shao Ning Yang; Katerina Hatzi; Karen L. Bunting; Lucas Tsikitas; Alka Mallik; Ana I. Robles; Jennifer Walling; Lyuba Varticovski; Rita Shaknovich; Kapil N. Bhalla; Gabriela Chiosis; Ari Melnick

We report that heat shock protein 90 (Hsp90) inhibitors selectively kill diffuse large B cell lymphomas (DLBCLs) that depend on the BCL-6 transcriptional repressor. We found that endogenous Hsp90 interacts with BCL-6 in DLBCL cells and can stabilize BCL-6 mRNA and protein. Hsp90 formed a complex with BCL-6 at its target promoters, and Hsp90 inhibitors derepressed BCL-6 target genes. A stable mutant of BCL-6 rescued DLBCL cells from Hsp90 inhibitor–induced apoptosis. BCL-6 and Hsp90 were almost invariantly coexpressed in the nuclei of primary DLBCL cells, suggesting that their interaction is relevant in this disease. We examined the pharmacokinetics, toxicity and efficacy of PU-H71, a recently developed purine-derived Hsp90 inhibitor. PU-H71 preferentially accumulated in lymphomas compared to normal tissues and selectively suppressed BCL-6–dependent DLBCLs in vivo, inducing reactivation of key BCL-6 target genes and apoptosis. PU-H71 also induced cell death in primary human DLBCL specimens.


Journal of Biological Chemistry | 1998

The Role of Phosphoinositide 3-Kinase in Taurocholate-induced Trafficking of ATP-dependent Canalicular Transporters in Rat Liver

Suniti Misra; Peter Ujházy; Zenaida Gatmaitan; Lyuba Varticovski; Irwin M. Arias

Recent studies indicate that wortmannin, a potent inhibitor of phosphatidylinositol (PI) 3-kinase, interferes with bile acid secretion in rat liver; taurocholate induces recruitment of ATP-dependent transporters to the bile canalicular membrane, and PI 3-kinase products are important in intracellular trafficking. We investigated the role of PI 3-kinase in bile acid secretion by studying the in vivo effect of taurocholate, colchicine, and wortmannin on bile acid secretion, kinase activity, and protein levels in canalicular membrane vesicle (CMV) and sinusoidal membrane vesicle (SMV) fractions from rat liver. Treatment of rats or perfusion of isolated liver with taurocholate significantly increased PI 3-kinase activity in both membrane fractions. Taurocholate increased protein content of ATP-dependent transporters, which were detected only in CMVs, whereas increased levels of p85 and a cell adhesion molecule, cCAM 105, were observed in both fractions. Colchicine prevented taurocholate-induced changes in all proteins studied, as well as the increase in PI 3-kinase activity in CMVs, but it resulted in further accumulation of PI 3-kinase activity, p85, and cCAM 105 in SMVs. These results indicate that taurocholate-mediated changes involve a microtubular system. Wortmannin blocked taurocholate-induced bile acid secretion. The effect was more profound when wortmannin was administered prior to treatment with taurocholate. When wortmannin was given after taurocholate, the protein levels of each ATP-dependent transporter were maintained in CMVs, whereas the levels of p85 and cCAM decreased in both membrane fractions. Perfusion of liver with wortmannin before taurocholate administration blocked accumulation of all proteins studied in CMVs and SMVs. These results indicate that PI 3-kinase is required for intracellular trafficking of itself, as well as of ATP-dependent canalicular transporters.


Cancer Research | 2007

Novel Indenoisoquinolines NSC 725776 and NSC 724998 Produce Persistent Topoisomerase I Cleavage Complexes and Overcome Multidrug Resistance

Smitha Antony; Keli Agama; Ze-Hong Miao; Kazutaka Takagi; Mollie H. Wright; Ana I. Robles; Lyuba Varticovski; Muthukaman Nagarajan; Andrew Morrell; Mark Cushman; Yves Pommier

Camptothecin (CPT) derivatives are effective anticancer drugs, especially against solid tumors. As CPTs are chemically unstable and have clinical limitations, we have synthesized indenoisoquinolines as novel topoisomerase I (Top1) inhibitors. We presently report two indenoisoquinoline derivatives, NSC 725776 and NSC 724998, which have been selected for therapeutic development. Both are potent Top1 inhibitors and induce Top1 cleavage at unique genomic positions compared with CPT. Consistent with Top1 poisoning, protein-linked DNA breaks were detected in cells treated with NSC 725776 and NSC 724998 at nanomolar concentrations. Those drug-induced protein-linked DNA breaks persisted longer after drug removal than those produced by CPT. Studies in human cells in culture show that NSC 725776 and NSC 724998 exert antiproliferative activity at submicromolar concentrations. Furthermore, NSC 725776 and NSC 724998 show cross-resistance in cells deficient or silenced for Top1, which is consistent with their selective Top1 targeting. Similar to other known Top1 inhibitors, NSC 725776-treated and NSC 724998-treated cells show an arrest of cell cycle progression in both S and G(2)-M and a dependence on functional p53 for their cytotoxicity. Dose-dependent gamma-H2AX foci formation was readily observed in cells treated with NSC 725776 and NSC 724998. These gamma-H2AX foci were detectable at pharmacologically relevant doses for up to 24 h and thus could be used as biomarkers for clinical trials (phase 0).

Collaboration


Dive into the Lyuba Varticovski's collaboration.

Top Co-Authors

Avatar

Ana I. Robles

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gordon L. Hager

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Crystal D. Salcido

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stephen D. Hursting

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Curtis C. Harris

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Irwin M. Arias

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Songjoon Baek

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Suniti Misra

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Lars Grøntved

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge