Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Luisa de Jesus Lopes Ribeiro is active.

Publication


Featured researches published by Ana Luisa de Jesus Lopes Ribeiro.


Tuberculosis | 2009

Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5–MmpL5 efflux system

Anna Milano; Maria Rosalia Pasca; Roberta Provvedi; Anna Paola Lucarelli; Giulia Manina; Ana Luisa de Jesus Lopes Ribeiro; Riccardo Manganelli; Giovanna Riccardi

Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. Moreover, the recent isolation of M. tuberculosis strains resistant to both first- and second-line antitubercular drugs (XDR-TB) threatens to make the treatment of this disease extremely difficult and becoming a threat to public health worldwide. Recently, it has been shown that azoles are potent inhibitors of mycobacterial cell growth and have antitubercular activity in mice, thus favoring the hypothesis that these drugs may constitute a novel strategy against tuberculosis disease. To investigate the mechanisms of resistance to azoles in mycobacteria, we isolated and characterized several spontaneous azoles resistant mutants from M. tuberculosis and Mycobacterium bovis BCG. All the analyzed resistant mutants exhibited both increased econazole efflux and increased transcription of mmpS5-mmpL5 genes, encoding a hypothetical efflux system belonging to the resistance-nodulation-division (RND) family of transporters. We found that the up-regulation of mmpS5-mmpL5 genes was linked to mutations either in the Rv0678 gene, hypothesized to be involved in the transcriptional regulation of this efflux system, or in its putative promoter/operator region.


Antimicrobial Agents and Chemotherapy | 2010

Clinical Isolates of Mycobacterium tuberculosis in Four European Hospitals Are Uniformly Susceptible to Benzothiazinones

Maria Rosalia Pasca; Giulia Degiacomi; Ana Luisa de Jesus Lopes Ribeiro; Francesca Zara; Patrizia De Mori; Beate Heym; Maurizio Mirrione; Roberto Brerra; Laura Pagani; Leopoldo Paolo Pucillo; Panajota Troupioti; Vadim Makarov; Stewart T. Cole; Giovanna Riccardi

ABSTRACT The new antitubercular drug candidate 2-[2-S-methyl-1,4-dioxa-8-azaspiro[4.5]dec-8-yl]-8-nitro-6-(trifluoromethyl)-4H-1,3-benzothiazin-4-one (BTZ043) targets the DprE1 (Rv3790) subunit of the enzyme decaprenylphosphoryl-β-d-ribose 2′-epimerase. To monitor the potential development of benzothiazinone (BTZ) resistance, a total of 240 sensitive and multidrug-resistant Mycobacterium tuberculosis clinical isolates from four European hospitals were surveyed for the presence of mutations in the dprE1 gene and for BTZ susceptibility. All 240 strains were susceptible, thus establishing the baseline prior to the introduction of BTZ043 in clinical trials.


Molecular Microbiology | 2010

Biological and Structural Characterization of the Mycobacterium Smegmatis Nitroreductase Nfnb, and its Role in Benzothiazinone Resistance

Giulia Manina; Marco Bellinzoni; Maria Rosalia Pasca; João Neres; Anna Milano; Ana Luisa de Jesus Lopes Ribeiro; Silvia Buroni; Henrieta Škovierová; Petronela Dianišková; Katarína Mikušová; Jozef Marák; Vadim Makarov; David Giganti; Ahmed Haouz; Anna Paola Lucarelli; Giulia Degiacomi; Aurora Piazza; Laurent R. Chiarelli; Edda De Rossi; Elena G. Salina; Stewart T. Cole; Pedro M. Alzari; Giovanna Riccardi

Tuberculosis is still a leading cause of death in developing countries, for which there is an urgent need for new pharmacological agents. The synthesis of the novel antimycobacterial drug class of benzothiazinones (BTZs) and the identification of their cellular target as DprE1 (Rv3790), a component of the decaprenylphosphoryl‐β‐d‐ribose 2′‐epimerase complex, have been reported recently. Here, we describe the identification and characterization of a novel resistance mechanism to BTZ in Mycobacterium smegmatis. The overexpression of the nitroreductase NfnB leads to the inactivation of the drug by reduction of a critical nitro‐group to an amino‐group. The direct involvement of NfnB in the inactivation of the lead compound BTZ043 was demonstrated by enzymology, microbiological assays and gene knockout experiments. We also report the crystal structure of NfnB in complex with the essential cofactor flavin mononucleotide, and show that a common amino acid stretch between NfnB and DprE1 is likely to be essential for the interaction with BTZ. We performed docking analysis of NfnB‐BTZ in order to understand their interaction and the mechanism of nitroreduction. Although Mycobacterium tuberculosis seems to lack nitroreductases able to inactivate these drugs, our findings are valuable for the design of new BTZ molecules, which may be more effective in vivo.


ACS Chemical Biology | 2015

2-Carboxyquinoxalines Kill Mycobacterium tuberculosis through Noncovalent Inhibition of DprE1

João Neres; Ruben C. Hartkoorn; Laurent R. Chiarelli; Ramakrishna Gadupudi; Maria Rosalia Pasca; Giorgia Mori; Alberto Venturelli; Svetlana Savina; Vadim Makarov; Gaëlle S. Kolly; Elisabetta Molteni; Claudia Binda; Neeraj Dhar; Stefania Ferrari; Priscille Brodin; Vincent Delorme; Valérie Landry; Ana Luisa de Jesus Lopes Ribeiro; Davide Salvatore Francesco Farina; Puneet Saxena; Florence Pojer; Antonio Carta; Rosaria Luciani; Alessio Porta; Giuseppe Zanoni; Edda De Rossi; Maria Paola Costi; Giovanna Riccardi; Stewart T. Cole

Phenotypic screening of a quinoxaline library against replicating Mycobacterium tuberculosis led to the identification of lead compound Ty38c (3-((4-methoxybenzyl)amino)-6-(trifluoromethyl)quinoxaline-2-carboxylic acid). With an MIC99 and MBC of 3.1 μM, Ty38c is bactericidal and active against intracellular bacteria. To investigate its mechanism of action, we isolated mutants resistant to Ty38c and sequenced their genomes. Mutations were found in rv3405c, coding for the transcriptional repressor of the divergently expressed rv3406 gene. Biochemical studies clearly showed that Rv3406 decarboxylates Ty38c into its inactive keto metabolite. The actual target was then identified by isolating Ty38c-resistant mutants of an M. tuberculosis strain lacking rv3406. Here, mutations were found in dprE1, encoding the decaprenylphosphoryl-d-ribose oxidase DprE1, essential for biogenesis of the mycobacterial cell wall. Genetics, biochemical validation, and X-ray crystallography revealed Ty38c to be a noncovalent, noncompetitive DprE1 inhibitor. Structure-activity relationship studies generated a family of DprE1 inhibitors with a range of IC50s and bactericidal activity. Co-crystal structures of DprE1 in complex with eight different quinoxaline analogs provided a high-resolution interaction map of the active site of this extremely vulnerable target in M. tuberculosis.


PLOS ONE | 2011

Analogous Mechanisms of Resistance to Benzothiazinones and Dinitrobenzamides in Mycobacterium smegmatis

Ana Luisa de Jesus Lopes Ribeiro; Giulia Degiacomi; Fanny Ewann; Silvia Buroni; Maria Loreto Incandela; Laurent R. Chiarelli; Giorgia Mori; Jaeseung Kim; Monica Contreras-Dominguez; Young Sam Park; Sung-Jun Han; Priscille Brodin; Giovanna Valentini; Menico Rizzi; Giovanna Riccardi; Maria Rosalia Pasca

Tuberculosis is still a leading cause of death worldwide. The selection and spread of Mycobacterium tuberculosis multidrug-resistant (MDR-TB) and extensively drug-resistant strains (XDR-TB) is a severe public health problem. Recently, two different classes of chemical series, the benzothiazinones (BTZ) and the dinitrobenzamide (DNB) derivatives have been found to be highly active against M. tuberculosis, including XDR-TB strains. The target of BTZs is DprE1 protein which works in concert with DprE2 to form the heteromeric decaprenylphosphoryl-β-D-ribose 2′-epimerase, involved in Decaprenyl-Phospho-Arabinose (DPA) biosynthesis. Interestingly, it has been shown that the DNBs block the same pathway thus suggesting that both drugs could share the same target. Moreover, in Mycobacterium smegmatis the overexpression of the NfnB nitroreductase led to the inactivation of the BTZs by reduction of a critical nitro-group to an amino-group. In this work several spontaneous M. smegmatis mutants resistant to DNBs were isolated. Sixteen mutants, showing high levels of DNB resistance, exhibited a mutation in the Cys394 of DprE1. Using fluorescence titration and mass spectrometry it has been possible to monitor the binding between DprE1 and DNBs, achieving direct evidence that MSMEG_6382 is the cellular target of DNBs in mycobacteria. Additionally, M. smegmatis mutants having low levels of resistance to DNBs harbor various mutations in MSMEG_6503 gene encoding the transcriptional repressor of the nitroreductase NfnB. By LC/MS2 analysis it has been demonstrated that NfnB is responsible for DNB inactivation. Taken together, our data demonstrate that both DNB and BTZ drugs share common resistance mechanisms in M. smegmatis.


Chemistry & Biology | 2015

Thiophenecarboxamide Derivatives Activated by EthA Kill Mycobacterium tuberculosis by Inhibiting the CTP Synthetase PyrG.

Giorgia Mori; Laurent R. Chiarelli; Marta Esposito; Vadim Makarov; Marco Bellinzoni; Ruben C. Hartkoorn; Giulia Degiacomi; Francesca Boldrin; Sean Ekins; Ana Luisa de Jesus Lopes Ribeiro; Leonardo B. Marino; Ivana Centárová; Zuzana Svetlíková; Jaroslav Blaško; Elena Kazakova; Alexander Yu. Lepioshkin; Nathalie Barilone; Giuseppe Zanoni; Alessio Porta; Marco Fondi; Renato Fani; Alain R. Baulard; Katarína Mikušová; Pedro M. Alzari; Riccardo Manganelli; Luiz Pedro S. de Carvalho; Giovanna Riccardi; Stewart T. Cole; Maria Rosalia Pasca

Summary To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target.


European Journal of Medicinal Chemistry | 2013

Synthesis and evaluation of α-ketotriazoles and α,β-diketotriazoles as inhibitors of Mycobacterium tuberculosis.

Christophe Menendez; Frédéric Rodriguez; Ana Luisa de Jesus Lopes Ribeiro; Francesca Zara; Céline Frongia; Valérie Lobjois; Nathalie Saffon; Maria Rosalia Pasca; Christian Lherbet; Michel Baltas

Two series of α-ketotriazole and α,β-diketotriazole derivatives were synthesized and evaluated for antitubercular and cytotoxic activities. Among them, two α,β-diketotriazole compounds, 6b and 9b, exhibited good activities (minimum inhibitory concentration = 7.6 μM and 6.9 μM, respectively) on Mycobacterium tuberculosis and multi-drug resistant M. tuberculosis strains and presented no cytotoxicity (IC₅₀ > 50 μM) on colorectal cancer HCT116 and normal fibroblast GM637H cell lines. These two compounds represent promising leads for further optimization.


ACS Chemical Biology | 2014

Rv2466c Mediates the Activation of TP053 To Kill Replicating and Non-replicating Mycobacterium tuberculosis

David Albesa-Jové; Laurent R. Chiarelli; Vadim Makarov; Maria Rosalia Pasca; Saioa Urresti; Giorgia Mori; Elena G. Salina; Anthony Vocat; Natalia Comino; Elisabeth Mohorko; Svetlana Ryabova; Bernhard Pfieiffer; Ana Luisa de Jesus Lopes Ribeiro; Ane Rodrigo-Unzueta; Montse Tersa; Giuseppe Zanoni; Silvia Buroni; Karl-Heinz Altmann; Ruben C. Hartkoorn; Stewart T. Cole; Giovanna Riccardi; Marcelo E. Guerin

The emergence of multidrug- and extensively drug-resistant strains of Mycobacterium tuberculosis highlights the need to discover new antitubercular agents. Here we describe the synthesis and characterization of a new series of thienopyrimidine (TP) compounds that kill both replicating and non-replicating M. tuberculosis. The strategy to determine the mechanism of action of these TP derivatives was to generate resistant mutants to the most effective compound TP053 and to isolate the genetic mutation responsible for this phenotype. The only non-synonymous mutation found was a g83c transition in the Rv2466c gene, resulting in the replacement of tryptophan 28 by a serine. The Rv2466c overexpression increased the sensitivity of M. tuberculosis wild-type and resistant mutant strains to TP053, indicating that TP053 is a prodrug activated by Rv2466c. Biochemical studies performed with purified Rv2466c demonstrated that only the reduced form of Rv2466c can activate TP053. The 1.7 Å resolution crystal structure of the reduced form of Rv2466c, a protein whose expression is transcriptionally regulated during the oxidative stress response, revealed a unique homodimer in which a β-strand is swapped between the thioredoxin domains of each subunit. A pronounced groove harboring the unusual active-site motif CPWC might account for the uncommon reactivity profile of the protein. The mutation of Trp28Ser clearly predicts structural defects in the thioredoxin fold, including the destabilization of the dimerization core and the CPWC motif, likely impairing the activity of Rv2466c against TP053. Altogether our experimental data provide insights into the molecular mechanism underlying the anti-mycobacterial activity of TP-based compounds, paving the way for future drug development programmes.


Microbial Drug Resistance | 2012

Evaluation of Fluoroquinolone Resistance Mechanisms in Pseudomonas aeruginosa Multidrug Resistance Clinical Isolates

Maria Rosalia Pasca; Claudia Dalla Valle; Ana Luisa de Jesus Lopes Ribeiro; Silvia Buroni; Maria Cristiana Papaleo; Silvia Bazzini; Claudia Udine; Maria Loreto Incandela; Silvio Daffara; Renato Fani; Giovanna Riccardi; Piero Marone

Efflux transporters have a considerable role in the multidrug resistance (MDR) of Pseudomonas aeruginosa, an important nosocomial pathogen. In this study, 45 P. aeruginosa clinical strains, with an MDR phenotype, have been isolated in a hospital of Northern Italy and characterized to identify the mechanisms responsible for their fluoroquinolone (FQ) resistance. These isolates were analyzed for clonal similarity, mutations in genes encoding the FQ targets, overexpression of specific Resistance Nodulation-cell Division efflux pumps, and search for mutations in their regulatory genes. The achieved results suggested that the mutations in genes encoding ciprofloxacin targets represented the main mechanism of FQ resistance of these strains; 97.8% of these isolates showed mutations in gyrA, 28.9% in gyrB, 88.9% in parC, and 6.7% in parE. Another mechanism of resistance was overexpression of the efflux pumps in some representative strains. In particular, overexpression of MexXY-OprM drug transporter was found in five isolates, whereas overexpression of MexCD-OprJ was detected in two isolates; surprisingly, in one of these last two isolates, also overexpression of MexAB-OprM pump was identified.


Fems Microbiology Letters | 2013

DprE1, a new taxonomic marker in mycobacteria

Maria Loreto Incandela; Elena Perrin; Marco Fondi; Ana Luisa de Jesus Lopes Ribeiro; Giorgia Mori; Alessia Moiana; Maurizio Gramegna; Renato Fani; Giovanna Riccardi; Maria Rosalia Pasca

Among the species of the Mycobacterium genus, more than 50 have been recognized as human pathogens. In spite of the different diseases caused by mycobacteria, the interspecies genetic similarity ranges from 94% to 100%, and for some species, this value is higher than in other bacteria. Consequently, it is important to understand the relationships existing among mycobacterial species. In this context, the possibility to use Mycobacterium tuberculosis dprE1 gene as new phylogenetic/taxonomic marker has been explored. The dprE1 gene codes for the target of benzothiazinones, belonging to a very promising class of antitubercular drugs. Mutations in cysteine 387 of DprE1 are responsible for benzothiazinone resistance. The DprE1 tree, obtained with 73 amino acid sequences of mycobacterial species, revealed that concerning the benzothiazinone sensitivity/resistance, it is possible to discriminate two clusters. To validate it, a concatamer obtained from the amino acid sequences of nine mycobacterial housekeeping genes was performed. The concatamer revealed that there is no separation between the benzothiazinone-susceptible and benzothiazinone-resistant species; consequently, this parameter is not linked to the phylogeny. DprE1 tree might represent a good taxonomic marker for the assignment of a mycobacterial isolate to a species. Moreover, the concatamer represents a good reference phylogeny for the Mycobacterium genus.

Collaboration


Dive into the Ana Luisa de Jesus Lopes Ribeiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vadim Makarov

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Stewart T. Cole

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge