Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgia Mori is active.

Publication


Featured researches published by Giorgia Mori.


ACS Chemical Biology | 2015

2-Carboxyquinoxalines Kill Mycobacterium tuberculosis through Noncovalent Inhibition of DprE1

João Neres; Ruben C. Hartkoorn; Laurent R. Chiarelli; Ramakrishna Gadupudi; Maria Rosalia Pasca; Giorgia Mori; Alberto Venturelli; Svetlana Savina; Vadim Makarov; Gaëlle S. Kolly; Elisabetta Molteni; Claudia Binda; Neeraj Dhar; Stefania Ferrari; Priscille Brodin; Vincent Delorme; Valérie Landry; Ana Luisa de Jesus Lopes Ribeiro; Davide Salvatore Francesco Farina; Puneet Saxena; Florence Pojer; Antonio Carta; Rosaria Luciani; Alessio Porta; Giuseppe Zanoni; Edda De Rossi; Maria Paola Costi; Giovanna Riccardi; Stewart T. Cole

Phenotypic screening of a quinoxaline library against replicating Mycobacterium tuberculosis led to the identification of lead compound Ty38c (3-((4-methoxybenzyl)amino)-6-(trifluoromethyl)quinoxaline-2-carboxylic acid). With an MIC99 and MBC of 3.1 μM, Ty38c is bactericidal and active against intracellular bacteria. To investigate its mechanism of action, we isolated mutants resistant to Ty38c and sequenced their genomes. Mutations were found in rv3405c, coding for the transcriptional repressor of the divergently expressed rv3406 gene. Biochemical studies clearly showed that Rv3406 decarboxylates Ty38c into its inactive keto metabolite. The actual target was then identified by isolating Ty38c-resistant mutants of an M. tuberculosis strain lacking rv3406. Here, mutations were found in dprE1, encoding the decaprenylphosphoryl-d-ribose oxidase DprE1, essential for biogenesis of the mycobacterial cell wall. Genetics, biochemical validation, and X-ray crystallography revealed Ty38c to be a noncovalent, noncompetitive DprE1 inhibitor. Structure-activity relationship studies generated a family of DprE1 inhibitors with a range of IC50s and bactericidal activity. Co-crystal structures of DprE1 in complex with eight different quinoxaline analogs provided a high-resolution interaction map of the active site of this extremely vulnerable target in M. tuberculosis.


PLOS ONE | 2011

Analogous Mechanisms of Resistance to Benzothiazinones and Dinitrobenzamides in Mycobacterium smegmatis

Ana Luisa de Jesus Lopes Ribeiro; Giulia Degiacomi; Fanny Ewann; Silvia Buroni; Maria Loreto Incandela; Laurent R. Chiarelli; Giorgia Mori; Jaeseung Kim; Monica Contreras-Dominguez; Young Sam Park; Sung-Jun Han; Priscille Brodin; Giovanna Valentini; Menico Rizzi; Giovanna Riccardi; Maria Rosalia Pasca

Tuberculosis is still a leading cause of death worldwide. The selection and spread of Mycobacterium tuberculosis multidrug-resistant (MDR-TB) and extensively drug-resistant strains (XDR-TB) is a severe public health problem. Recently, two different classes of chemical series, the benzothiazinones (BTZ) and the dinitrobenzamide (DNB) derivatives have been found to be highly active against M. tuberculosis, including XDR-TB strains. The target of BTZs is DprE1 protein which works in concert with DprE2 to form the heteromeric decaprenylphosphoryl-β-D-ribose 2′-epimerase, involved in Decaprenyl-Phospho-Arabinose (DPA) biosynthesis. Interestingly, it has been shown that the DNBs block the same pathway thus suggesting that both drugs could share the same target. Moreover, in Mycobacterium smegmatis the overexpression of the NfnB nitroreductase led to the inactivation of the BTZs by reduction of a critical nitro-group to an amino-group. In this work several spontaneous M. smegmatis mutants resistant to DNBs were isolated. Sixteen mutants, showing high levels of DNB resistance, exhibited a mutation in the Cys394 of DprE1. Using fluorescence titration and mass spectrometry it has been possible to monitor the binding between DprE1 and DNBs, achieving direct evidence that MSMEG_6382 is the cellular target of DNBs in mycobacteria. Additionally, M. smegmatis mutants having low levels of resistance to DNBs harbor various mutations in MSMEG_6503 gene encoding the transcriptional repressor of the nitroreductase NfnB. By LC/MS2 analysis it has been demonstrated that NfnB is responsible for DNB inactivation. Taken together, our data demonstrate that both DNB and BTZ drugs share common resistance mechanisms in M. smegmatis.


Chemistry & Biology | 2015

Thiophenecarboxamide Derivatives Activated by EthA Kill Mycobacterium tuberculosis by Inhibiting the CTP Synthetase PyrG.

Giorgia Mori; Laurent R. Chiarelli; Marta Esposito; Vadim Makarov; Marco Bellinzoni; Ruben C. Hartkoorn; Giulia Degiacomi; Francesca Boldrin; Sean Ekins; Ana Luisa de Jesus Lopes Ribeiro; Leonardo B. Marino; Ivana Centárová; Zuzana Svetlíková; Jaroslav Blaško; Elena Kazakova; Alexander Yu. Lepioshkin; Nathalie Barilone; Giuseppe Zanoni; Alessio Porta; Marco Fondi; Renato Fani; Alain R. Baulard; Katarína Mikušová; Pedro M. Alzari; Riccardo Manganelli; Luiz Pedro S. de Carvalho; Giovanna Riccardi; Stewart T. Cole; Maria Rosalia Pasca

Summary To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target.


European Journal of Medicinal Chemistry | 2014

Synthesis of 3-heteryl substituted pyrrolidine-2,5-diones via catalytic Michael reaction and evaluation of their inhibitory activity against InhA and Mycobacterium tuberculosis

Tetiana Matviiuk; Giorgia Mori; Christian Lherbet; Frédéric Rodriguez; Maria Rosalia Pasca; Marian V. Gorichko; Brigitte Guidetti; Zoia Voitenko; Michel Baltas

In the present paper, we report the synthesis via catalytic Michael reaction and biological results of a series of 3-heteryl substituted pyrrolidine-2,5-dione derivatives as moderate inhibitors against Mycobacterium tuberculosis H37Rv growth. Some of them present also inhibition activities against InhA.


ACS Medicinal Chemistry Letters | 2016

Design, Syntheses, and Anti-TB Activity of 1,3-Benzothiazinone Azide and Click Chemistry Products Inspired by BTZ043

Rohit Tiwari; Patricia A. Miller; Laurent R. Chiarelli; Giorgia Mori; Michal Šarkan; Ivana Centárová; Sanghyun Cho; Katarína Mikušová; Scott G. Franzblau; Allen G. Oliver; Marvin J. Miller

Electron deficient nitroaromatic compounds such as BTZ043 and its closest congener, PBTZ169, and related agents are a promising new class of anti-TB compounds. Herein we report the design and syntheses of 1,3-benzothiazinone azide (BTZ-N3) and related click chemistry products based on the molecular mode of activation of BTZ043. Our computational docking studies indicate that BTZ-N3 binds in the essentially same pocket as that of BTZ043. Detailed biochemical studies with cell envelope enzyme fractions of Mycobacterium smegmatis combined with our model biochemical reactivity studies with nucleophiles indicated that, in contrast to BTZ043, the azide analogue may have a different mode of activation for anti-TB activity. Subsequent enzymatic studies with recombinant DprE1 from Mtb followed by MIC determination in NTB1 strain of Mtb (harboring Cys387Ser mutation in DprE1 and is BTZ043 resistant) unequivocally indicated that BTZ-N3 is an effective reversible and noncovalent inhibitor of DprE1.


ACS Chemical Biology | 2014

Rv2466c Mediates the Activation of TP053 To Kill Replicating and Non-replicating Mycobacterium tuberculosis

David Albesa-Jové; Laurent R. Chiarelli; Vadim Makarov; Maria Rosalia Pasca; Saioa Urresti; Giorgia Mori; Elena G. Salina; Anthony Vocat; Natalia Comino; Elisabeth Mohorko; Svetlana Ryabova; Bernhard Pfieiffer; Ana Luisa de Jesus Lopes Ribeiro; Ane Rodrigo-Unzueta; Montse Tersa; Giuseppe Zanoni; Silvia Buroni; Karl-Heinz Altmann; Ruben C. Hartkoorn; Stewart T. Cole; Giovanna Riccardi; Marcelo E. Guerin

The emergence of multidrug- and extensively drug-resistant strains of Mycobacterium tuberculosis highlights the need to discover new antitubercular agents. Here we describe the synthesis and characterization of a new series of thienopyrimidine (TP) compounds that kill both replicating and non-replicating M. tuberculosis. The strategy to determine the mechanism of action of these TP derivatives was to generate resistant mutants to the most effective compound TP053 and to isolate the genetic mutation responsible for this phenotype. The only non-synonymous mutation found was a g83c transition in the Rv2466c gene, resulting in the replacement of tryptophan 28 by a serine. The Rv2466c overexpression increased the sensitivity of M. tuberculosis wild-type and resistant mutant strains to TP053, indicating that TP053 is a prodrug activated by Rv2466c. Biochemical studies performed with purified Rv2466c demonstrated that only the reduced form of Rv2466c can activate TP053. The 1.7 Å resolution crystal structure of the reduced form of Rv2466c, a protein whose expression is transcriptionally regulated during the oxidative stress response, revealed a unique homodimer in which a β-strand is swapped between the thioredoxin domains of each subunit. A pronounced groove harboring the unusual active-site motif CPWC might account for the uncommon reactivity profile of the protein. The mutation of Trp28Ser clearly predicts structural defects in the thioredoxin fold, including the destabilization of the dimerization core and the CPWC motif, likely impairing the activity of Rv2466c against TP053. Altogether our experimental data provide insights into the molecular mechanism underlying the anti-mycobacterial activity of TP-based compounds, paving the way for future drug development programmes.


ACS Infectious Diseases | 2017

A phenotypic based target screening approach delivers new antitubercular CTP synthetase inhibitors

Marta Esposito; Sára Szádocka; Giulia Degiacomi; Beatrice Silvia Orena; Giorgia Mori; Valentina Piano; Francesca Boldrin; Júlia Zemanová; Stanislav Huszár; David Barros; Sean Ekins; Joël Lelièvre; Riccardo Manganelli; Andrea Mattevi; Maria Rosalia Pasca; Giovanna Riccardi; Lluis Ballell; Katarína Mikušová; Laurent R. Chiarelli

Despite its great potential, the target-based approach has been mostly unsuccessful in tuberculosis drug discovery, while whole cell phenotypic screening has delivered several active compounds. However, for many of these hits, the cellular target has not yet been identified, thus preventing further target-based optimization of the compounds. In this context, the newly validated drug target CTP synthetase PyrG was exploited to assess a target-based approach of already known, but untargeted, antimycobacterial compounds. To this purpose the publically available GlaxoSmithKline antimycobacterial compound set was assayed, uncovering a series of 4-(pyridin-2-yl)thiazole derivatives which efficiently inhibit the Mycobacterium tuberculosis PyrG enzyme activity, one of them showing low activity against the human CTP synthetase. The three best compounds were ATP binding site competitive inhibitors, with Ki values ranging from 3 to 20 μM, but did not show any activity against a small panel of different prokaryotic and eukaryotic kinases, thus demonstrating specificity for the CTP synthetases. Metabolic labeling experiments demonstrated that the compounds directly interfere not only with CTP biosynthesis, but also with other CTP dependent biochemical pathways, such as lipid biosynthesis. Moreover, using a M. tuberculosis pyrG conditional knock-down strain, it was shown that the activity of two compounds is dependent on the intracellular concentration of the CTP synthetase. All these results strongly suggest a role of PyrG as a target of these compounds, thus strengthening the value of this kind of approach for the identification of new scaffolds for drug development.


Current Medicinal Chemistry | 2016

New and Old Hot Drug Targets in Tuberculosis.

Laurent R. Chiarelli; Giorgia Mori; Marta Esposito; Beatrice Silvia Orena; Maria Rosalia Pasca

Tuberculosis is an infectious disease caused by the bacillus Mycobacterium tuberculosis. The World Health Organization publishes global tuberculosis reports annually in order to provide the latest information in the surveillance of drug resistance. Given the alarming rise of resistance to antitubercular drugs worldwide, finding new cellular targets and developing new analogues or new compounds with greater potency against already known targets are both important aspects in fighting drug-sensitive and drug-resistant M. tuberculosis strains. In this context, the introduction of the phenotypic screens as an efficient tool for the identification of active compounds for tuberculosis drug discovery has improved the possibility to find new effective targets. With this review we describe the state of art of the currently well validated antitubercular drug targets as well as the advances in discovery of new ones. The main targets will be discussed starting from the oldest such as the enoyl reductase InhA which is constantly repurposed with new inhibitors, through the well assessed targets like the gyrase, the ATP synthetase or the RNA polymerase, up to the hot promiscuous targets decaprenylphosphoryl-Dribose oxidase DprE1 and the mycolic acid transporter MmpL3, or the newly validated and promising targets like the CTP synthetase.


ChemMedChem | 2016

Triazolophthalazines: Easily Accessible Compounds with Potent Antitubercular Activity.

Damien Veau; Serhii Krykun; Giorgia Mori; Beatrice Silvia Orena; Maria Rosalia Pasca; Céline Frongia; Valérie Lobjois; Stefan Chassaing; Christian Lherbet; Michel Baltas

Tuberculosis (TB) remains one of the major causes of death worldwide, in particular because of the emergence of multidrug‐resistant TB. Herein we explored the potential of an alternative class of molecules as anti‐TB agents. Thus, a series of novel 3‐substituted triazolophthalazines was quickly and easily prepared from commercial hydralazine hydrochloride as starting material and were further evaluated for their antimycobacterial activities and cytotoxicities. Four of the synthesized compounds were found to effectively inhibit the Mycobacterium tuberculosis (M.tb) H37Rv strain with minimum inhibitory concentration (MIC) values <10 μg mL−1, whereas no compounds displayed cytotoxicity against HCT116 human cell lines (IC50>100 μm). More remarkably, the most potent compounds proved to be active to a similar extent against various multidrug‐resistant M.tb strains, thus uncovering a mode of action distinct from that of standard antitubercular agents. Overall, their ease of preparation, combined with their attractive antimycobacterial activities, make such triazolophthalazine‐based derivatives promising leads for further development.


Fems Microbiology Letters | 2013

DprE1, a new taxonomic marker in mycobacteria

Maria Loreto Incandela; Elena Perrin; Marco Fondi; Ana Luisa de Jesus Lopes Ribeiro; Giorgia Mori; Alessia Moiana; Maurizio Gramegna; Renato Fani; Giovanna Riccardi; Maria Rosalia Pasca

Among the species of the Mycobacterium genus, more than 50 have been recognized as human pathogens. In spite of the different diseases caused by mycobacteria, the interspecies genetic similarity ranges from 94% to 100%, and for some species, this value is higher than in other bacteria. Consequently, it is important to understand the relationships existing among mycobacterial species. In this context, the possibility to use Mycobacterium tuberculosis dprE1 gene as new phylogenetic/taxonomic marker has been explored. The dprE1 gene codes for the target of benzothiazinones, belonging to a very promising class of antitubercular drugs. Mutations in cysteine 387 of DprE1 are responsible for benzothiazinone resistance. The DprE1 tree, obtained with 73 amino acid sequences of mycobacterial species, revealed that concerning the benzothiazinone sensitivity/resistance, it is possible to discriminate two clusters. To validate it, a concatamer obtained from the amino acid sequences of nine mycobacterial housekeeping genes was performed. The concatamer revealed that there is no separation between the benzothiazinone-susceptible and benzothiazinone-resistant species; consequently, this parameter is not linked to the phylogeny. DprE1 tree might represent a good taxonomic marker for the assignment of a mycobacterial isolate to a species. Moreover, the concatamer represents a good reference phylogeny for the Mycobacterium genus.

Collaboration


Dive into the Giorgia Mori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Baltas

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Katarína Mikušová

Comenius University in Bratislava

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge