Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Margarida Araújo is active.

Publication


Featured researches published by Ana Margarida Araújo.


Archives of Toxicology | 2015

The hallucinogenic world of tryptamines: an updated review

Ana Margarida Araújo; Félix Carvalho; Maria de Lourdes Bastos; Paula Guedes de Pinho; Márcia Carvalho

In the area of psychotropic drugs, tryptamines are known to be a broad class of classical or serotonergic hallucinogens. These drugs are capable of producing profound changes in sensory perception, mood and thought in humans and act primarily as agonists of the 5-HT2A receptor. Well-known tryptamines such as psilocybin contained in Aztec sacred mushrooms and N,N-dimethyltryptamine (DMT), present in South American psychoactive beverage ayahuasca, have been restrictedly used since ancient times in sociocultural and ritual contexts. However, with the discovery of hallucinogenic properties of lysergic acid diethylamide (LSD) in mid-1900s, tryptamines began to be used recreationally among young people. More recently, new synthetically produced tryptamine hallucinogens, such as alpha-methyltryptamine (AMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT), emerged in the recreational drug market, which have been claimed as the next-generation designer drugs to replace LSD (‘legal’ alternatives to LSD). Tryptamine derivatives are widely accessible over the Internet through companies selling them as ‘research chemicals’, but can also be sold in ‘headshops’ and street dealers. Reports of intoxication and deaths related to the use of new tryptamines have been described over the last years, raising international concern over tryptamines. However, the lack of literature pertaining to pharmacological and toxicological properties of new tryptamine hallucinogens hampers the assessment of their actual potential harm to general public health. This review provides a comprehensive update on tryptamine hallucinogens, concerning their historical background, prevalence, patterns of use and legal status, chemistry, toxicokinetics, toxicodynamics and their physiological and toxicological effects on animals and humans.


International Journal of Environmental Research and Public Health | 2012

The Impact of an Intervention Taught by Trained Teachers on Childhood Overweight

Rafaela Rosário; Bruno Oliveira; Ana Margarida Araújo; Óscar Lopes; Patrícia Padrão; André Moreira; Vitor Hugo Teixeira; Renata Barros; Beatriz Oliveira Pereira; Pedro Moreira

The purpose of this study was to assess the effects of a six-months’ nutrition program, delivered and taught by classroom teachers with in-service nutrition training, on the prevention of overweight and obesity among children in grades 1 to 4. In this randomized trial, four hundred and sixty four children from seven elementary schools were allocated to a nutrition educational program delivered by their own teachers. Intervened teachers had 12 sessions of three hours each with the researchers throughout six months, according to the topics nutrition and healthy eating, the importance of drinking water and healthy cooking activities. After each session, teachers were encouraged to develop activities in class focused on the learned topics. Sociodemographic, anthropometric, dietary, and physical activity assessments were performed at baseline and at the end of the intervention. In the intervention group the increase in Body Mass Index (BMI) z-score was significantly lower than in the control group (p = 0.009); fewer proportion of children became overweight in the intervened group compared with the control (5.6% vs. 18.4%; p = 0.037). Our study provides further support to decrease the overweight epidemic, involving classroom teachers in a training program and making them dedicated interventionists.


Journal of Obesity | 2012

The impact of an intervention taught by trained teachers on childhood fruit and vegetable intake: A randomized trial

Rafaela Rosário; Ana Margarida Araújo; Bruno Oliveira; Patrícia Padrão; Óscar Lopes; Vitor Hugo Teixeira; André Moreira; Renata Barros; Beatriz Oliveira Pereira; Pedro Moreira

Our study aimed to assess the impact of a six-months nutrition program, taught by trained teachers, on fruit and vegetable consumption among children in grades 1 to 4. Four hundred and sixty-four children (239 female), 6 to 12 years old, from seven elementary schools were assigned to this randomized trial. Teachers were trained by researchers over six months, according to the following topics: nutrition, healthy eating, and strategies to increase physical activity. After each session, teachers were encouraged to develop activities in the classroom on the topics learned. Childrens sociodemographic, anthropometric, dietary, and physical activity data were assessed at baseline and at the end of the intervention. The effect sizes ranged between small (Cohens d = 0.12 on “other vegetables”) to medium (0.56 on “fruit and vegetable”), and intervened children reported a significantly higher consumption of vegetables and fruit. Interventions involving trained teachers offer promise to increase consumption of fruit and vegetable in children.


Toxicological Sciences | 2016

Editor’s Highlight: Characterization of Hepatotoxicity Mechanisms Triggered by Designer Cathinone Drugs (β-Keto Amphetamines)

Maria João Valente; Ana Margarida Araújo; Maria de Lourdes Bastos; Eduarda Fernandes; Félix Carvalho; Paula Guedes de Pinho; Márcia Carvalho

The use of cathinone designer drugs in recreational settings has been associated with severe toxic effects, including liver damage. The precise mechanisms by which cathinones induce hepatotoxicity and whether they act by common pathways remain to be elucidated. Herein, we assessed the toxicity of the cathinones methylone, pentedrone, 3,4-methylenedioxypyrovalerone (MDPV) and 4-methylethcathinone (4-MEC) in primary rat hepatocytes (PRH) and HepaRG cells, and compared with that of 3,4-methylenedioxymethamphetamine (MDMA). MDPV and pentedrone were significantly more toxic than MDMA, while methylone was the least cytotoxic compound. Importantly, PRH revealed to be the most sensitive experimental model and was thus used to explore the mechanisms underlying the observed toxicity. All drugs elicited the formation of reactive oxygen and nitrogen species (ROS and RNS), but more markedly for methylone, pentedrone and 4-MEC. GSH depletion was also a common effect at the highest concentration tested, whereas only MDPV and pentedrone caused a significant decrease in ATP levels. The antioxidants ascorbic acid or N-acetyl-L-cysteine partially attenuated the observed cell death. All cathinones triggered significant caspase activation and apoptosis, which was partially reversed by the caspase inhibitor Ac-LETD-CHO. In conclusion, the present data shows that (1) cathinones induce in vitro hepatotoxic effects that vary in magnitude among the different analogues, (2) oxidative stress and mitochondrial dysfunction play a role in cathinones-induced hepatic injury, and (3) apoptosis appears to be an important pathway of cell death elicited by these novel drugs.


Talanta | 2016

Optimisation and validation of a HS-SPME-GC-IT/MS method for analysis of carbonyl volatile compounds as biomarkers in human urine: Application in a pilot study to discriminate individuals with smoking habits.

Isabel Calejo; N. Moreira; Ana Margarida Araújo; Márcia Carvalho; Maria de Lourdes Bastos; Paula Guedes de Pinho

A new and simple analytical approach consisting of an automated headspace solid-phase microextraction (HS-SPME) sampler coupled to gas chromatography-ion trap/mass spectrometry detection (GC-IT/MS) with a prior derivatization step with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was developed to detect volatile carbonyl metabolites with low molecular weights in human urine. A central composite design (CCD) was used to optimise the PFBHA concentration and extraction conditions that affect the efficiency of the SPME procedure. With a sample volume of 1 mL, optimal conditions were achieved by adding 300 mg/L of PFBHA and allowing the sample to equilibrate for 6 min at 62°C and then extracting the samples for 51 min at the same temperature, using a divinylbenzene/polydimethylsiloxane (DVB/PDMS) fibre. The method allowed the simultaneous identification and quantification of 44 carbonyl compounds consisting of aldehydes, dialdehydes, heterocyclic aldehydes and ketones. The method was validated with regards to the linearity, inter- and intra-day precision and accuracy. The detection limits ranged from 0.009 to 0.942 ng/mL, except for 4-hydroxy-2-nonenal (15 ng/mL), and the quantification limits varied from 0.029 to 1.66 ng/mL, except for butanal (2.78 ng/mL), 2-butanone (2.67 ng/mL), 4-heptanone (3.14 ng/mL) and 4-hydroxy-2-nonenal (50.0 ng/mL). The method accuracy was satisfactory, with recoveries ranging from 90 to 107%. The proof of applicability of the methodology was performed in a pilot target analysis of urine samples obtained from 18 healthy smokers and 18 healthy non-smokers (control group). Chemometric supervised analysis was performed using the volatile patterns acquired for these samples and clearly showed the potential of the volatile carbonyl profiles to discriminate urine from smoker and non-smoker subjects. 5-Methyl-2-furfural (p<0.0001), 2-methylpropanal, nonanal and 2-methylbutanal (p<0.05) were identified as potentially useful biomarkers to identify smoking habits.


Critical Reviews in Toxicology | 2017

Metabolomic approaches in the discovery of potential urinary biomarkers of drug-induced liver injury (DILI)

Ana Margarida Araújo; Márcia Carvalho; Félix Carvalho; Maria de Lourdes Bastos; Paula Guedes de Pinho

Abstract Drug-induced liver injury (DILI) is a major safety issue during drug development, as well as the most common cause for the withdrawal of drugs from the pharmaceutical market. The identification of DILI biomarkers is a labor-intensive area. Conventional biomarkers are not specific and often only appear at significant levels when liver damage is substantial. Therefore, new biomarkers for early identification of hepatotoxicity during the drug discovery process are needed, thus resulting in lower development costs and safer drugs. In this sense, metabolomics has been increasingly playing an important role in the discovery of biomarkers of liver damage, although the characterization of the mechanisms of toxicity induced by xenobiotics remains a huge challenge. These new-generation biomarkers will offer obvious benefits for the pharmaceutical industry, regulatory agencies, as well as a personalized clinical follow-up of patients, upon validation and translation into clinical practice or approval for routine use. This review describes the current status of the metabolomics applied to the early diagnosis and prognosis of DILI and in the discovery of new potential urinary biomarkers of liver injury.


Porto Biomedical Journal | 2017

Adherence to the Mediterranean diet in children: Is it associated with economic cost?

Gabriela Albuquerque; Pedro Moreira; Rafaela Rosário; Ana Margarida Araújo; Vitor Hugo Teixeira; Otília Pereira Lopes; André Moreira; Patrícia Padrão

HighlightsThe average diet cost was 4.58&U20AC; (SD = 1.24) in 6–12 years‐old children.Diet cost calculations were based on food prices information from 2011.Most children reported medium (69.1%) or high (4.6%) adherence to Mediterranean diet.Higher adherence to Mediterranean diet was associated with higher diet cost. Objective: To assess how the diet cost is associated with socio‐demographic factors and adherence to Mediterranean diet in children. Methods: Data were obtained from a community‐based survey of children selected from public elementary schools in Portugal. Of a total of 586 children attending these schools, 464 (6–12 years), were studied. Dietary intake was assessed by a 24 hour recall and the adherence to Mediterranean diet was evaluated through the KIDMED index. The cost of the diet was calculated based on the collection of food prices of a national leader supermarket, and expressed as Total Daily Cost (TDC) and Total Daily Cost‐Adjusted for Energy (TDEC). Anthropometric measures were taken and socio‐demographic data were gathered from a questionnaire filled by parents. Logistic regression was used to quantify the association between diet cost, socio‐demographics and adherence to Mediterranean diet. Results: The average TDC was 4.58&U20AC; (SD = 1.24). Most children (69.1%) reported medium adherence to Mediterranean diet, and 4.6% rated the higher score. TDC was higher for children with highest adherence to Mediterranean diet, compared to those with lowest adherence [TDC: OR = 5.70 (95% CI 1.53, 21.33), p for trend = 0.001; TDEC: OR = 2.83 (95% CI 0.89, 8.96, p for trend 0.018)]. No meaningful variation in the diet cost with age and parental education was observed. Conclusion: Higher adherence to Mediterranean diet was associated with higher diet cost in children.


Scientific Reports | 2018

Discrimination between the human prostate normal and cancer cell exometabolome by GC-MS

Ana Rita Lima; Ana Margarida Araújo; Joana Pinto; Carmen Jerónimo; Rui Henrique; Maria de Lourdes Bastos; Márcia Carvalho; Paula Guedes de Pinho

Serum prostate-specific antigen (PSA) is currently the most used biomarker in clinical practice for prostate cancer (PCa) detection. However, this biomarker has several drawbacks. In this work, an untargeted gas chromatography-mass spectrometry (GC-MS)-based metabolomic profiling of PCa cells was performed to prove the concept that metabolic alterations might differentiate PCa cell lines from normal prostate cell line. For that, we assessed the differences in volatile organic compounds (VOCs) profile in the extracellular medium (exometabolome) of four PCa cell lines and one normal prostate cell line at two pH values (pH 2 and 7) by GC-MS. Multivariate analysis revealed a panel of volatile metabolites that discriminated cancerous from normal prostate cells. The most altered metabolites included ketones, aldehydes and organic acids. Among these, we highlight pentadecane-2-one and decanoic acid, which were significantly increased in PCa compared to normal cells, and cyclohexanone, 4-methylheptan-2-one, 2-methylpentane-1,3-diol, 4-methylbenzaldehyde, 1-(3,5-dimethylfuran-2-yl)ethanone, methyl benzoate and nonanoic acid, which were significantly decreased in PCa cells. The PCa volatilome was markedly influenced by the VOCs extraction pH, though the discriminant capability was similar. Overall, our data suggest that VOCs monitoring has the potential to be used as a PCa screening methodology.


Metabolites | 2018

GC-MS-Based Endometabolome Analysis Differentiates Prostate Cancer from Normal Prostate Cells

Ana Rita Lima; Ana Margarida Araújo; Joana Pinto; Carmen Jerónimo; Rui Henrique; Maria de Lourdes Bastos; Márcia Carvalho; Paula Guedes de Pinho

Prostate cancer (PCa) is an important health problem worldwide. Diagnosis and management of PCa is very complex because the detection of serum prostate specific antigen (PSA) has several drawbacks. Metabolomics brings promise for cancer biomarker discovery and for better understanding PCa biochemistry. In this study, a gas chromatography–mass spectrometry (GC-MS) based metabolomic profiling of PCa cell lines was performed. The cell lines include 22RV1 and LNCaP from PCa with androgen receptor (AR) expression, DU145 and PC3 (which lack AR expression), and one normal prostate cell line (PNT2). Regarding the metastatic potential, PC3 is from an adenocarcinoma grade IV with high metastatic potential, DU145 has a moderate metastatic potential, and LNCaP has a low metastatic potential. Using multivariate analysis, alterations in levels of several intracellular metabolites were detected, disclosing the capability of the endometabolome to discriminate all PCa cell lines from the normal prostate cell line. Discriminant metabolites included amino acids, fatty acids, steroids, and sugars. Six stood out for the separation of all the studied PCa cell lines from the normal prostate cell line: ethanolamine, lactic acid, β-Alanine, L-valine, L-leucine, and L-tyrosine.


Toxicology Letters | 2018

Analysis of extracellular metabolome by HS-SPME/GC–MS: Optimization and application in a pilot study to evaluate galactosamine-induced hepatotoxicity

Ana Margarida Araújo; N. Moreira; Ana Rita Lima; Maria de Lourdes Bastos; Félix Carvalho; Márcia Carvalho; Paula Guedes de Pinho

Two methods based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) were developed to study in vitro the volatile exometabolome, which were then further tested in a pilot study to evaluate galactosamine-induced hepatotoxicity. The analysis of volatile organic compounds (VOCs) was carried out directly in the headspace of the cell culture medium, while some other volatile organic compounds such as volatile carbonyl compounds (VCCs) (aldehydes and ketones) were determined in the headspace of the cell culture medium after a previous derivatization step with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA). Fiber selection was performed using a univariate mode, whereas a central composite design (CCD) was used in the optimization of several other parameters that affect the extraction conditions. VOCs showed optimal extraction results using a DVB/CAR/PDMS fiber, by adding 0.43 g of NaCl to a sample volume of 2 mL and allowing the sample to equilibrate for 10 min at 45 °C with a subsequent extraction for 39 min at the same temperature. For VCCs, the best extraction response was achieved after in-solution (2 mL) derivatization with 0.94 g L-1 of PFBHA (final concentration), followed by an incubation period of 6 min and an extraction time of 37 min at 53 °C, using a PDMS/DVB fiber. The applicability of both optimized methods was then tested, through a untargeted study, on cell culture medium samples obtained from primary mouse hepatocytes (PMH) exposed to three low concentrations (LC01, LC10 and LC30) of the well-known hepatotoxic agent galactosamine (GalN). The results obtained by both methods showed that volatile compounds from GalN exposed cells are separated from controls in a concentration-dependent manner. Several volatile compounds, namely aldehydes, ketones and alcohols, suffered significant alterations, suggesting that GalN induces marked metabolic alterations in cells even at low, non-toxic concentrations. Although preliminary, this metabolomics approach proved its potential to be used in future studies to evaluate toxicity of different xenobiotics.

Collaboration


Dive into the Ana Margarida Araújo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge