Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Márcia Carvalho is active.

Publication


Featured researches published by Márcia Carvalho.


Archives of Toxicology | 2012

Toxicity of amphetamines: an update.

Márcia Carvalho; Helena Carmo; Vera Marisa Costa; João Paulo Capela; Helena Pontes; Fernando Remião; Félix Carvalho; Maria de Lourdes Bastos

Amphetamines represent a class of psychotropic compounds, widely abused for their stimulant, euphoric, anorectic, and, in some cases, emphathogenic, entactogenic, and hallucinogenic properties. These compounds derive from the β-phenylethylamine core structure and are kinetically and dynamically characterized by easily crossing the blood–brain barrier, to resist brain biotransformation and to release monoamine neurotransmitters from nerve endings. Although amphetamines are widely acknowledged as synthetic drugs, of which amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are well-known examples, humans have used natural amphetamines for several millenniums, through the consumption of amphetamines produced in plants, namely cathinone (khat), obtained from the plant Catha edulis and ephedrine, obtained from various plants in the genus Ephedra. More recently, a wave of new amphetamines has emerged in the market, mainly constituted of cathinone derivatives, including mephedrone, methylone, methedrone, and buthylone, among others. Although intoxications by amphetamines continue to be common causes of emergency department and hospital admissions, it is frequent to find the sophism that amphetamine derivatives, namely those appearing more recently, are relatively safe. However, human intoxications by these drugs are increasingly being reported, with similar patterns compared to those previously seen with classical amphetamines. That is not surprising, considering the similar structures and mechanisms of action among the different amphetamines, conferring similar toxicokinetic and toxicological profiles to these compounds. The aim of the present review is to give an insight into the pharmacokinetics, general mechanisms of biological and toxicological actions, and the main target organs for the toxicity of amphetamines. Although there is still scarce knowledge from novel amphetamines to draw mechanistic insights, the long-studied classical amphetamines—amphetamine itself, as well as methamphetamine and MDMA, provide plenty of data that may be useful to predict toxicological outcome to improvident abusers and are for that reason the main focus of this review.


Archives of Toxicology | 2014

Khat and synthetic cathinones: a review.

Maria João Valente; Paula Guedes de Pinho; Maria de Lourdes Bastos; Félix Carvalho; Márcia Carvalho

For centuries, ‘khat sessions’ have played a key role in the social and cultural traditions among several communities around Saudi Arabia and most East African countries. The identification of cathinone as the main psychoactive compound of khat leaves, exhibiting amphetamine-like pharmacological properties, resulted in the synthesis of several derivatives structurally similar to this so-called natural amphetamine. Synthetic cathinones were primarily developed for therapeutic purposes, but promptly started being misused and extensively abused for their euphoric effects. In the mid-2000’s, synthetic cathinones emerged in the recreational drug markets as legal alternatives (‘legal highs’) to amphetamine, ‘ecstasyʼ, or cocaine. Currently, they are sold as ‘bath salts’ or ‘plant foodʼ, under ambiguous labels lacking information about their true contents. Cathinone derivatives are conveniently available online or at ‘smartshops’ and are much more affordable than the traditional illicit drugs. Despite the scarcity of scientific data on these ‘legal highs’, synthetic cathinones use became an increasingly popular practice worldwide. Additionally, criminalization of these derivatives is often useless since for each specific substance that gets legally controlled, one or more structurally modified analogs are introduced into the legal market. Chemically, these substances are structurally related to amphetamine. For this reason, cathinone derivatives share with this drug both central nervous system stimulating and sympathomimetic features. Reports of intoxication and deaths related to the use of ‘bath salts’ have been frequently described over the last years, and several attempts to apply a legislative control on synthetic cathinones have been made. However, further research on their pharmacological and toxicological properties is fully required in order to access the actual potential harm of synthetic cathinones to general public health. The present work provides a review on khat and synthetic cathinones, concerning their historical background, prevalence, patterns of use, legal status, chemistry, pharmacokinetics, pharmacodynamics, and their physiological and toxicological effects on animals and humans.


Food and Chemical Toxicology | 2011

Comparative antihemolytic and radical scavenging activities of strawberry tree (Arbutus unedo L.) leaf and fruit

Lídia S. Mendes; Victor de Freitas; Paula Baptista; Márcia Carvalho

The present study reports the antioxidant properties of Arbutus unedo L. leaf and fruit extracts using different in vitro assays including (i) reducing power, (ii) scavenging effect on DPPH free radicals, and (iii) inhibitory effect on AAPH-induced hemolysis and lipid peroxidation in human erythrocytes. All assays demonstrated antioxidant efficiency for A. unedo L. aqueous extracts, being consistently higher in the leaf. EC(50) values for reducing power and DPPH radical scavenging activities were, respectively, 0.318 ± 0.007 and 0.087 ± 0.007 mg/mL for leaf, and 2.894 ± 0.049 and 0.790 ± 0.016 mg/mL for fruit extracts. Under the oxidative action of AAPH, A. unedo leaf and fruit extracts protected the erythrocyte membrane from hemolysis (IC(50) of 0.062 ± 0.002 and 0.430 ± 0.091 mg/mL, respectively) and decreased the levels of malondialdehyde, a breakdown product of lipid peroxidation (IC(50) of 0.075 ± 0.014 and 0.732 ± 0.452 mg/mL, respectively). In accordance with antioxidant activity, phenolic content was found to be significantly higher in leaf extract. To our knowledge, this is the first time that the antioxidant activity of A. unedo species is evaluated using human biological membranes. Overall, our results suggest that A. unedo leaves are a promising source of natural antioxidants with potential application in diseases mediated by free radicals.


Current Medicinal Chemistry | 2011

Contribution of Catecholamine Reactive Intermediates and Oxidative Stress to the Pathologic Features of Heart Diseases

Vera Marisa Costa; Félix Carvalho; M.L. Bastos; Rui A. Carvalho; Márcia Carvalho; Fernando Remião

Pathologic heart conditions, particularly heart failure (HF) and ischemia-reperfusion (I/R) injury, are characterized by sustained elevation of plasma and interstitial catecholamine levels, as well as by the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Despite the continuous and extensive research on catecholamines since the early years of the XX(th) century, the mechanisms underlying catecholamine-induced cardiotoxicity are still not fully elucidated. The role of catecholamines in HF, stress cardiomyopathy, I/R injury, ageing, stress, and pheochromocytoma will be thoroughly discussed. Furthermore and although the noxious effects resulting from catecholamine excess have traditionally been linked to adrenoceptors, in fact, several evidences indicate that oxidative stress and the oxidation of catecholamines can have important roles in catecholamine-induced cardiotoxicity. Accordingly, the reactive intermediates formed during catecholamine oxidation have been associated with cardiac toxicity, both in in vitro and in vivo studies. An insight into the influence of ROS, RNS, and catecholamine oxidation products on several heart diseases and their clinical course will be provided. In addition, the source and type of oxidant species formed in some heart pathologies will be referred. In this review a special focus will be given to the research of cardiac pathologies where catecholamines and oxidative stress are involved. An integrated vision of these matters is required and will be provided along this review, namely how the concomitant surge of catecholamines and ROS occurs and how they can be interconnected. The concomitant presence of these factors can elicit peculiar and not fully characterized responses on the heart. We will approach the existing data with new perspectives as they can help explaining several controversial results regarding cardiovascular diseases and the redox ability of catecholamines.


Journal of Agricultural and Food Chemistry | 2010

First report on Cydonia oblonga Miller anticancer potential: differential antiproliferative effect against human kidney and colon cancer cells.

Márcia Carvalho; Branca M. Silva; Renata Silva; Patrícia Valentão; Paula B. Andrade; Maria de Lourdes Bastos

The present study reports the phenolic profile and antiproliferative properties of quince (Cydonia oblonga Miller) leaf and fruit (pulp, peel, and seed) against human kidney and colon cancer cells. The phenolic profiles of quince methanolic extracts were determined by high-performance liquid chromatography (HPLC)/diode array detector (DAD). 5-O-Caffeoylquinic acid was always one of the two major phenolic compounds present in all extracts, except for seed. Our results revealed that quince leaf and fruit extracts exhibited distinctive antiproliferative activities. The extracts from quince leaf showed concentration-dependent growth inhibitory activity toward human colon cancer cells (IC(50) = 239.7 +/- 43.2 microg/mL), while no effect was observed in renal adenocarcinoma cells. Concerning the fruit, seed extracts exhibited no effect on colon cancer cell growth, whereas strong antiproliferative efficiency against renal cancer cells was observed for the highest concentration assayed (500 microg/mL). The antiproliferative activity of pulp and peel extracts was low or absent in the selected range of extract concentrations. This is the first report showing that C. oblonga may be useful as a cancer chemopreventive and/or chemotherapeutic agent.


Archives of Toxicology | 2015

The hallucinogenic world of tryptamines: an updated review

Ana Margarida Araújo; Félix Carvalho; Maria de Lourdes Bastos; Paula Guedes de Pinho; Márcia Carvalho

In the area of psychotropic drugs, tryptamines are known to be a broad class of classical or serotonergic hallucinogens. These drugs are capable of producing profound changes in sensory perception, mood and thought in humans and act primarily as agonists of the 5-HT2A receptor. Well-known tryptamines such as psilocybin contained in Aztec sacred mushrooms and N,N-dimethyltryptamine (DMT), present in South American psychoactive beverage ayahuasca, have been restrictedly used since ancient times in sociocultural and ritual contexts. However, with the discovery of hallucinogenic properties of lysergic acid diethylamide (LSD) in mid-1900s, tryptamines began to be used recreationally among young people. More recently, new synthetically produced tryptamine hallucinogens, such as alpha-methyltryptamine (AMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT), emerged in the recreational drug market, which have been claimed as the next-generation designer drugs to replace LSD (‘legal’ alternatives to LSD). Tryptamine derivatives are widely accessible over the Internet through companies selling them as ‘research chemicals’, but can also be sold in ‘headshops’ and street dealers. Reports of intoxication and deaths related to the use of new tryptamines have been described over the last years, raising international concern over tryptamines. However, the lack of literature pertaining to pharmacological and toxicological properties of new tryptamine hallucinogens hampers the assessment of their actual potential harm to general public health. This review provides a comprehensive update on tryptamine hallucinogens, concerning their historical background, prevalence, patterns of use and legal status, chemistry, toxicokinetics, toxicodynamics and their physiological and toxicological effects on animals and humans.


Current Pharmaceutical Biotechnology | 2010

Mechanisms Underlying the Hepatotoxic Effects of Ecstasy

Márcia Carvalho; Helena Pontes; Fernando Remião; Maria de Lourdes Bastos; Félix Carvalho

3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is a worldwide illegally used amphetamine-derived designer drug known to be hepatotoxic to humans. Jaundice, hepatomegaly, centrilobular necrosis, hepatitis and fibrosis represent some of the adverse effects caused by MDMA in the liver. Although there is irrefutable evidence of MDMA-induced hepatocellular damage, the mechanisms responsible for that toxicity remain to be thoroughly clarified. One well thought-of mechanism imply MDMA metabolism in the liver into reactive metabolites as responsible for the MDMA-elicited hepatotoxicity. However, other factors, including MDMA-induced hyperthermia, the increase in neurotransmitters efflux, the oxidation of biogenic amines, polydrug abuse pattern, and environmental features accompanying illicit MDMA use, may increase the risk for liver complications. Liver damage patterns of MDMA in animals and humans and current research on the mechanisms underlying the hepatotoxic effects of MDMA will be highlighted in this review.


Toxicologic Pathology | 2004

Protective activity of hesperidin and lipoic acid against sodium arsenite acute toxicity in mice.

Ricardo Pires das Neves; Félix Carvalho; Márcia Carvalho; Eduarda Fernandes; Elisa Soares; Maria de Lourdes Bastos; Maria de Lourdes Pereira

The objective of the present work was to evaluate the toxic effects of sodium arsenite, As(III), in mice and the protective effect of 2 antioxidants, hesperidin and lipoic acid, against the observed As(III)-induced toxicity. In each study, mice were assigned to 1 of 4 groups: control, antioxidant, antioxidant + arsenite, and arsenite. Animals were first injected with the vehicle or 25 mg antioxidant/kg BW. After 30 minutes they received an injection of 10 mg arsenite/kg BW or 0.9% NaCl. Two hours after the first injection, the liver, kidney, and testis were collected for histological evaluation. Liver samples were also taken for quantification of arsenic. In mice exposed only to As(III), various histopathological effects were observed in the liver, kidneys, and testes. In mice pretreated with either hesperidin or lipoic acid, a reduction of histopathologic effects on the liver and kidneys was observed. No protective effects were observed in the testes for either of the 2 studied antioxidants. In conclusion, hesperidin and lipoic acid provided protective effects against As(III)-induced acute toxicity in the liver and kidneys of mice. These compounds may potentially play an important role in the protection of populations chronically exposed to arsenic.


Current Medicinal Chemistry | 2012

Contribution of Oxidative Metabolism to Cocaine-Induced Liver and Kidney Damage

Maria João Valente; Félix Carvalho; M.L. Bastos; P.G. de Pinho; Márcia Carvalho

Cocaine is a potent psychoactive illicit substance and its abuse represents a major health burden worldwide. The pharmacodynamics and toxicity of cocaine have been extensively documented, and are generally associated to its affinity towards neurotransmitters transporters and several receptors. However, drug-related formation of reactive compounds, as is the case of pro-oxidant reactive species, and interaction at molecular level is still an understudied matter. The involvement of oxidative stress (OS) in cocaine-induced toxicity has been reported in both human and animal models, in several organs and systems, including heart, liver, kidney, and central nervous system (CNS). Cytochrome P450 (CYP450)-mediated cocaine metabolism yields the reactive pro-oxidant compound norcocaine (NCOC) and further oxidative metabolites. Special emphasis should be given to the stable radical norcocaine nitroxide (NCOC-NO·), which plays a key role in cocaine-induced hepatotoxicity, either by entering a futile redox cycle with an N-oxidative metabolite, or by being further oxidized to a highly reactive ion. In fact, cocaine-induced generation of reactive oxygen species (ROS) and consequent OS has been postulated based on the reactivity of cocaine N-oxidative metabolites. Depletion of cellular antioxidant defenses and impairment of mitochondrial respiration have also been considered important causes of ROS production, and subsequent cell death mediated by cocaine. The present review provides a thorough description of the current knowledge on cocaine oxidative metabolism and its role on drug-induced liver and kidney damage.


Recent Patents on Food, Nutrition & Agriculture | 2009

Recent Patents on Camellia sinensis: Source of Health Promoting Compounds

Patricia M. Moderno; Márcia Carvalho; Branca M. Silva

In recent years, the scientific community, food industry, consumers and media have revealed a growing interest regarding the potential benefits of tea consumption for human health. Several studies indicate that phenolic compounds, especially flavan-3-ols (catechins), are the main components responsible for the medicinal effects of this beverage due to their recognized antioxidant properties. Antioxidants are ascribed to reduce cells and biomolecules oxidative damage caused by reactive oxygen/nitrogen species (ROS/RNS). In fact, ROS and RNS have been implicated in the oxidative deterioration of food products, as well as in the pathogenesis of several chronic and/or ageing diseases such as atherosclerosis, diabetes mellitus, chronic inflammation, neurodegenerative disorders, including Alzheimers disease, and certain types of cancer. (-)-Epigallocatechin-3-gallate, the main component of white and green teas, for which chemical synthesis is complex, not only possesses strong antiradicalar activity but also can inhibit nitration reactions, modulate carcinogen-metabolizing enzymes, trap ultimate carcinogens and inhibit cancer cell proliferation. The recent patents on the tea manufacture, extracts preparation and health-promoting properties are reviewed in this manuscript, especially in what concerns the chemopreventive and chemotherapeutic activities of tea polyphenols.

Collaboration


Dive into the Márcia Carvalho's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge