Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Maria Cuervo is active.

Publication


Featured researches published by Ana Maria Cuervo.


Nature | 2008

Autophagy fights disease through cellular self-digestion

Noboru Mizushima; Beth Levine; Ana Maria Cuervo; Daniel J. Klionsky

Autophagy, or cellular self-digestion, is a cellular pathway involved in protein and organelle degradation, with an astonishing number of connections to human disease and physiology. For example, autophagic dysfunction is associated with cancer, neurodegeneration, microbial infection and ageing. Paradoxically, although autophagy is primarily a protective process for the cell, it can also play a role in cell death. Understanding autophagy may ultimately allow scientists and clinicians to harness this process for the purpose of improving human health.


Nature | 2009

Autophagy regulates lipid metabolism.

Rajat Singh; Susmita Kaushik; Yongjun Wang; Youqing Xiang; Inna Novak; Masaaki Komatsu; Keiji Tanaka; Ana Maria Cuervo; Mark J. Czaja

The intracellular storage and utilization of lipids are critical to maintain cellular energy homeostasis. During nutrient deprivation, cellular lipids stored as triglycerides in lipid droplets are hydrolysed into fatty acids for energy. A second cellular response to starvation is the induction of autophagy, which delivers intracellular proteins and organelles sequestered in double-membrane vesicles (autophagosomes) to lysosomes for degradation and use as an energy source. Lipolysis and autophagy share similarities in regulation and function but are not known to be interrelated. Here we show a previously unknown function for autophagy in regulating intracellular lipid stores (macrolipophagy). Lipid droplets and autophagic components associated during nutrient deprivation, and inhibition of autophagy in cultured hepatocytes and mouse liver increased triglyceride storage in lipid droplets. This study identifies a critical function for autophagy in lipid metabolism that could have important implications for human diseases with lipid over-accumulation such as those that comprise the metabolic syndrome.


Nature Neuroscience | 2010

Autophagy gone awry in neurodegenerative diseases

Esther Wong; Ana Maria Cuervo

Autophagy is essential for neuronal homeostasis, and its dysfunction has been directly linked to a growing number of neurodegenerative disorders. The reasons behind autophagic failure in degenerating neurons can be very diverse because of the different steps required for autophagy and the characterization of the molecular players involved in each of them. Understanding the step(s) affected in the autophagic process in each disorder could explain differences in the course of these pathologies and will be essential to developing targeted therapeutic approaches for each disease based on modulation of autophagy. Here we present examples of different types of autophagic dysfunction described in common neurodegenerative disorders and discuss the prospect of exploring some of the recently identified autophagic variants and the interactions among autophagic and non-autophagic proteolytic systems as possible future therapeutic targets.


Science | 1996

A receptor for the selective uptake and degradation of proteins by lysosomes

Ana Maria Cuervo; J. Fred Dice

Multiple pathways of protein degradation operate within cells. A selective protein import pathway exists for the uptake and degradation of particular cytosolic proteins by lysosomes. Here, the lysosomal membrane glycoprotein LGP96 was identified as a receptor for the selective import and degradation of proteins within lysosomes. Specific substrates of this proteolytic pathway bound to the cytosolic tail of a 96-kilodalton lysosomal membrane protein in two different binding assays. Overexpression of human LGP96 in Chinese hamster ovary cells increased the activity of the selective lysosomal proteolytic pathway in vivo and in vitro.


Cell | 2010

Lysosomal Proteolysis and Autophagy Require Presenilin 1 and Are Disrupted by Alzheimer-Related PS1 Mutations

Ju-Hyun Lee; W. Haung Yu; Asok Kumar; Sooyeon Lee; Panaiyur S. Mohan; Corrinne M. Peterhoff; Devin M. Wolfe; Marta Martinez-Vicente; Ashish C. Massey; Guy Sovak; Yasuo Uchiyama; David Westaway; Ana Maria Cuervo; Ralph A. Nixon

Macroautophagy is a lysosomal degradative pathway essential for neuron survival. Here, we show that macroautophagy requires the Alzheimers disease (AD)-related protein presenilin-1 (PS1). In PS1 null blastocysts, neurons from mice hypomorphic for PS1 or conditionally depleted of PS1, substrate proteolysis and autophagosome clearance during macroautophagy are prevented as a result of a selective impairment of autolysosome acidification and cathepsin activation. These deficits are caused by failed PS1-dependent targeting of the v-ATPase V0a1 subunit to lysosomes. N-glycosylation of the V0a1 subunit, essential for its efficient ER-to-lysosome delivery, requires the selective binding of PS1 holoprotein to the unglycosylated subunit and the Sec61alpha/oligosaccharyltransferase complex. PS1 mutations causing early-onset AD produce a similar lysosomal/autophagy phenotype in fibroblasts from AD patients. PS1 is therefore essential for v-ATPase targeting to lysosomes, lysosome acidification, and proteolysis during autophagy. Defective lysosomal proteolysis represents a basis for pathogenic protein accumulations and neuronal cell death in AD and suggests previously unidentified therapeutic targets.


Autophagy | 2005

Autophagy and Aging The Importance of Maintaining "Clean" Cells

Ana Maria Cuervo; Ettore Bergamini; Ulf T. Brunk; Wulf Dröge; Martine Ffrench; Alexei Terman

A decrease in the rate of protein turnover and the intracellular accumulation of altered proteins in cytosol and membranes are features common to all aged cells. Diminished autophagic activity plays a major role in these age-related manifestations. In this work we review the molecular defects responsible for the malfunctioning of two forms of autophagy - macroautophagy and chaperone-mediated autophagy - in old mammals, and highlight general and cell-type specific consequences of dysfunction of the autophagic system with age. Dietary caloric restriction and antilipolytic agents have been proven to efficiently stimulate autophagy in old rodents. These and other possible restorative efforts are discussed.


Autophagy | 2007

Methods for monitoring autophagy from yeast to human

Daniel J. Klionsky; Ana Maria Cuervo; Per O. Seglen

The increasing interest in autophagy in a wide range of organisms, accompanied by an ever-growing influx of researchers into this field, necessitates a good understanding of the methodologies available to monitor this process. In this review we discuss current approaches that can be used to follow the overall process of autophagy, as well as individual steps, from yeast to human. The majority of the review considers methods that apply to macroautophagy; however, we also consider alternative types of degradation including chaperone-mediated autophagy and microautophagy. This information is meant to provide a resource for newcomers as well as a stimulus for experienced researchers who may be prompted to develop additional assays to examine autophagy-related pathways.


The EMBO Journal | 2010

HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy

Joo Yong Lee; Hiroshi Koga; Yoshiharu Kawaguchi; Waixing Tang; Esther Wong; Ya Sheng Gao; Udai B. Pandey; Susmita Kaushik; Emily Tresse; Jianrong Lu; J. Paul Taylor; Ana Maria Cuervo; Tso-Pang Yao

Autophagy is primarily considered a non‐selective degradation process induced by starvation. Nutrient‐independent basal autophagy, in contrast, imposes intracellular QC by selective disposal of aberrant protein aggregates and damaged organelles, a process critical for suppressing neurodegenerative diseases. The molecular mechanism that distinguishes these two fundamental autophagic responses, however, remains mysterious. Here, we identify the ubiquitin‐binding deacetylase, histone deacetylase‐6 (HDAC6), as a central component of basal autophagy that targets protein aggregates and damaged mitochondria. Surprisingly, HDAC6 is not required for autophagy activation; rather, it controls the fusion of autophagosomes to lysosomes. HDAC6 promotes autophagy by recruiting a cortactin‐dependent, actin‐remodelling machinery, which in turn assembles an F‐actin network that stimulates autophagosome–lysosome fusion and substrate degradation. Indeed, HDAC6 deficiency leads to autophagosome maturation failure, protein aggregate build‐up, and neurodegeneration. Remarkably, HDAC6 and F‐actin assembly are completely dispensable for starvation‐induced autophagy, uncovering the fundamental difference of these autophagic modes. Our study identifies HDAC6 and the actin cytoskeleton as critical components that define QC autophagy and uncovers a novel regulation of autophagy at the level of autophagosome–lysosome fusion.


Nature Neuroscience | 2010

CARGO RECOGNITION FAILURE IS RESPONSIBLE FOR INEFFICIENT AUTOPHAGY IN HUNTINGTON’S DISEASE

Marta Martinez-Vicente; Zsolt Talloczy; Esther Wong; Guomei Tang; Hiroshi Koga; Susmita Kaushik; Rosa L.A. de Vries; Esperanza Arias; Spike Harris; David Sulzer; Ana Maria Cuervo

Continuous turnover of intracellular components by autophagy is necessary to preserve cellular homeostasis in all tissues. Alterations in macroautophagy, the main process responsible for bulk autophagic degradation, have been proposed to contribute to pathogenesis in Huntingtons disease (HD), a genetic neurodegenerative disorder caused by an expanded polyglutamine tract in the huntingtin protein. However, the precise mechanism behind macroautophagy malfunction in HD is poorly understood. In this work, using cellular and mouse models of HD and cells from humans with HD, we have identified a primary defect in the ability of autophagic vacuoles to recognize cytosolic cargo in HD cells. Autophagic vacuoles form at normal or even enhanced rates in HD cells and are adequately eliminated by lysosomes, but they fail to efficiently trap cytosolic cargo in their lumen. We propose that inefficient engulfment of cytosolic components by autophagosomes is responsible for their slower turnover, functional decay and accumulation inside HD cells.


Journal of Clinical Investigation | 2009

Autophagy regulates adipose mass and differentiation in mice

Rajat Singh; Youqing Xiang; Yongjun Wang; Kiran Baikati; Ana Maria Cuervo; Yen K. Luu; Yan Tang; Jeffrey E. Pessin; Gary J. Schwartz; Mark J. Czaja

The relative balance between the quantity of white and brown adipose tissue can profoundly affect lipid storage and whole-body energy homeostasis. However, the mechanisms regulating the formation, expansion, and interconversion of these 2 distinct types of fat remain unknown. Recently, the lysosomal degradative pathway of macroautophagy has been identified as a regulator of cellular differentiation, suggesting that autophagy may modulate this process in adipocytes. The function of autophagy in adipose differentiation was therefore examined in the current study by genetic inhibition of the critical macroautophagy gene autophagy-related 7 (Atg7). Knockdown of Atg7 in 3T3-L1 preadipocytes inhibited lipid accumulation and decreased protein levels of adipocyte differentiation factors. Knockdown of Atg5 or pharmacological inhibition of autophagy or lysosome function also had similar effects. An adipocyte-specific mouse knockout of Atg7 generated lean mice with decreased white adipose mass and enhanced insulin sensitivity. White adipose tissue in knockout mice had increased features of brown adipocytes, which, along with an increase in normal brown adipose tissue, led to an elevated rate of fatty acid, beta-oxidation, and a lean body mass. Autophagy therefore functions to regulate body lipid accumulation by controlling adipocyte differentiation and determining the balance between white and brown fat.

Collaboration


Dive into the Ana Maria Cuervo's collaboration.

Top Co-Authors

Avatar

Susmita Kaushik

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Koga

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ashish C. Massey

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Bindi Patel

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Marta Martinez-Vicente

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge