Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marta Martinez-Vicente is active.

Publication


Featured researches published by Marta Martinez-Vicente.


Cell | 2010

Lysosomal Proteolysis and Autophagy Require Presenilin 1 and Are Disrupted by Alzheimer-Related PS1 Mutations

Ju-Hyun Lee; W. Haung Yu; Asok Kumar; Sooyeon Lee; Panaiyur S. Mohan; Corrinne M. Peterhoff; Devin M. Wolfe; Marta Martinez-Vicente; Ashish C. Massey; Guy Sovak; Yasuo Uchiyama; David Westaway; Ana Maria Cuervo; Ralph A. Nixon

Macroautophagy is a lysosomal degradative pathway essential for neuron survival. Here, we show that macroautophagy requires the Alzheimers disease (AD)-related protein presenilin-1 (PS1). In PS1 null blastocysts, neurons from mice hypomorphic for PS1 or conditionally depleted of PS1, substrate proteolysis and autophagosome clearance during macroautophagy are prevented as a result of a selective impairment of autolysosome acidification and cathepsin activation. These deficits are caused by failed PS1-dependent targeting of the v-ATPase V0a1 subunit to lysosomes. N-glycosylation of the V0a1 subunit, essential for its efficient ER-to-lysosome delivery, requires the selective binding of PS1 holoprotein to the unglycosylated subunit and the Sec61alpha/oligosaccharyltransferase complex. PS1 mutations causing early-onset AD produce a similar lysosomal/autophagy phenotype in fibroblasts from AD patients. PS1 is therefore essential for v-ATPase targeting to lysosomes, lysosome acidification, and proteolysis during autophagy. Defective lysosomal proteolysis represents a basis for pathogenic protein accumulations and neuronal cell death in AD and suggests previously unidentified therapeutic targets.


Nature Neuroscience | 2010

CARGO RECOGNITION FAILURE IS RESPONSIBLE FOR INEFFICIENT AUTOPHAGY IN HUNTINGTON’S DISEASE

Marta Martinez-Vicente; Zsolt Talloczy; Esther Wong; Guomei Tang; Hiroshi Koga; Susmita Kaushik; Rosa L.A. de Vries; Esperanza Arias; Spike Harris; David Sulzer; Ana Maria Cuervo

Continuous turnover of intracellular components by autophagy is necessary to preserve cellular homeostasis in all tissues. Alterations in macroautophagy, the main process responsible for bulk autophagic degradation, have been proposed to contribute to pathogenesis in Huntingtons disease (HD), a genetic neurodegenerative disorder caused by an expanded polyglutamine tract in the huntingtin protein. However, the precise mechanism behind macroautophagy malfunction in HD is poorly understood. In this work, using cellular and mouse models of HD and cells from humans with HD, we have identified a primary defect in the ability of autophagic vacuoles to recognize cytosolic cargo in HD cells. Autophagic vacuoles form at normal or even enhanced rates in HD cells and are adequately eliminated by lysosomes, but they fail to efficiently trap cytosolic cargo in their lumen. We propose that inefficient engulfment of cytosolic components by autophagosomes is responsible for their slower turnover, functional decay and accumulation inside HD cells.


Journal of Clinical Investigation | 2008

Dopamine-modified α-synuclein blocks chaperone-mediated autophagy

Marta Martinez-Vicente; Zsolt Tallóczy; Susmita Kaushik; Ashish C. Massey; Joseph R. Mazzulli; Eugene V. Mosharov; Roberto Hodara; Ross A. Fredenburg; Du Chu Wu; Antonia Follenzi; William T. Dauer; Serge Przedborski; Harry Ischiropoulos; Peter T. Lansbury; David Sulzer; Ana Maria Cuervo

Altered degradation of alpha-synuclein (alpha-syn) has been implicated in the pathogenesis of Parkinson disease (PD). We have shown that alpha-syn can be degraded via chaperone-mediated autophagy (CMA), a selective lysosomal mechanism for degradation of cytosolic proteins. Pathogenic mutants of alpha-syn block lysosomal translocation, impairing their own degradation along with that of other CMA substrates. While pathogenic alpha-syn mutations are rare, alpha-syn undergoes posttranslational modifications, which may underlie its accumulation in cytosolic aggregates in most forms of PD. Using mouse ventral medial neuron cultures, SH-SY5Y cells in culture, and isolated mouse lysosomes, we have found that most of these posttranslational modifications of alpha-syn impair degradation of this protein by CMA but do not affect degradation of other substrates. Dopamine-modified alpha-syn, however, is not only poorly degraded by CMA but also blocks degradation of other substrates by this pathway. As blockage of CMA increases cellular vulnerability to stressors, we propose that dopamine-induced autophagic inhibition could explain the selective degeneration of PD dopaminergic neurons.


Lancet Neurology | 2007

Autophagy and neurodegeneration: when the cleaning crew goes on strike

Marta Martinez-Vicente; Ana Maria Cuervo

Intracellular accumulation of altered and misfolded proteins is the basis of most neurodegenerative disorders. Altered proteins are usually organised in the form of toxic multimeric complexes that eventually promote neuronal death. Cells rely on surveillance mechanisms that take care of the removal of these toxic products. What then goes wrong in these pathologies? Recent studies have shown that a primary failure in autophagy, a mechanism for clearance of intracellular components in lysosomes, could be responsible for the accumulation of these altered proteins inside the affected neurons. In this Review we summarise our current knowledge on the contribution of autophagy to the maintenance of normal cellular homoeostasis, its changes in neurodegenerative disorders, and the role of aggravating factors such as oxidative stress and ageing on autophagic failure in these pathologies.


Human Molecular Genetics | 2009

Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing

Yipeng Wang; Marta Martinez-Vicente; Ulrike Krüger; Susmita Kaushik; Esther Wong; Eva Maria Mandelkow; Ana Maria Cuervo; Eckhard Mandelkow

Aggregation and cleavage are two hallmarks of Tau pathology in Alzheimer disease (AD), and abnormal fragmentation of Tau is thought to contribute to the nucleation of Tau paired helical filaments. Clearance of the abnormally modified protein could occur by the ubiquitin-proteasome and autophagy-lysosomal pathways, the two major routes for protein degradation in cells. There is a debate on which of these pathways contributes to clearance of Tau protein and of the abnormal Tau aggregates formed in AD. Here, we demonstrate in an inducible neuronal cell model of tauopathy that the autophagy-lysosomal system contributes to both Tau fragmentation into pro-aggregating forms and to clearance of Tau aggregates. Inhibition of macroautophagy enhances Tau aggregation and cytotoxicity. The Tau repeat domain can be cleaved near the N terminus by a cytosolic protease to generate the fragment F1. Additional cleavage near the C terminus by the lysosomal protease cathepsin L is required to generate Tau fragments F2 and F3 that are highly amyloidogenic and capable of seeding the aggregation of Tau. We identify in this work that components of a selective form of autophagy, chaperone-mediated autophagy, are involved in the delivery of cytosolic Tau to lysosomes for this limited cleavage. However, F1 does not fully enter the lysosome but remains associated with the lysosomal membrane. Inefficient translocation of the Tau fragments across the lysosomal membrane seems to promote formation of Tau oligomers at the surface of these organelles which may act as precursors of aggregation and interfere with lysosomal functioning.


Nature Reviews Neuroscience | 2011

Fighting neurodegeneration with rapamycin: mechanistic insights

Jordi Bové; Marta Martinez-Vicente; Miquel Vila

A growing number of studies point to rapamycin as a pharmacological compound that is able to provide neuroprotection in several experimental models of neurodegenerative diseases, including Alzheimers disease, Parkinsons disease, Huntingtons disease and spinocerebellar ataxia type 3. In addition, rapamycin exerts strong anti-ageing effects in several species, including mammals. By inhibiting the activity of mammalian target of rapamycin (mTOR), rapamycin influences a variety of essential cellular processes, such as cell growth and proliferation, protein synthesis and autophagy. Here, we review the molecular mechanisms underlying the neuroprotective effects of rapamycin and discuss the therapeutic potential of this compound for neurodegenerative diseases.


Experimental Gerontology | 2005

Protein degradation and aging.

Marta Martinez-Vicente; Guy Sovak; Ana Maria Cuervo

Continuous turnover of intracellular proteins is essential for the maintenance of cellular homeostasis and for the regulation of multiple cellular functions. The first reports showing a decrease in total rates of protein degradation with age are dated more than 50 years ago, when the major players in protein degradation where still to be discovered. The current advances in the molecular characterization of the two main intracellular proteolytic systems, the lysosomal and the ubiquitin proteasome system, offer now the possibility of a systematic search for the defect(s) that lead to the declined activity of these systems in old organisms. We discuss here, in light of the current findings, how malfunctioning of these two proteolytic systems can contribute to different aspects of the phenotype of aging and to the pathogenesis of some age-related diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration

Benjamin Dehay; Alfredo Ramirez; Marta Martinez-Vicente; Celine Perier; Marie-Hélène Canron; Evelyne Doudnikoff; Anne Vital; Miquel Vila; Christine Klein; Erwan Bezard

Parkinson disease (PD) is a progressive neurodegenerative disorder pathologically characterized by the loss of dopaminergic neurons from the substantia nigra pars compacta and the presence, in affected brain regions, of protein inclusions named Lewy bodies (LBs). The ATP13A2 gene (locus PARK9) encodes the protein ATP13A2, a lysosomal type 5 P-type ATPase that is linked to autosomal recessive familial parkinsonism. The physiological function of ATP13A2, and hence its role in PD, remains to be elucidated. Here, we show that PD-linked mutations in ATP13A2 lead to several lysosomal alterations in ATP13A2 PD patient-derived fibroblasts, including impaired lysosomal acidification, decreased proteolytic processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished lysosomal-mediated clearance of autophagosomes. Similar alterations are observed in stable ATP13A2-knockdown dopaminergic cell lines, which are associated with cell death. Restoration of ATP13A2 levels in ATP13A2-mutant/depleted cells restores lysosomal function and attenuates cell death. Relevant to PD, ATP13A2 levels are decreased in dopaminergic nigral neurons from patients with PD, in which ATP13A2 mostly accumulates within Lewy bodies. Our results unravel an instrumental role of ATP13A2 deficiency on lysosomal function and cell viability and demonstrate the feasibility and therapeutic potential of modulating ATP13A2 levels in the context of PD.


Movement Disorders | 2013

Lysosomal Impairment in Parkinson's Disease

Benjamin Dehay; Marta Martinez-Vicente; Guy A. Caldwell; Kim A. Caldwell; Zhenyue Yue; Mark R. Cookson; Christine Klein; Miquel Vila; Erwan Bezard

Impairment of autophagy‐lysosomal pathways (ALPs) is increasingly regarded as a major pathogenic event in neurodegenerative diseases, including Parkinsons disease (PD). ALP alterations are observed in sporadic PD brains and in toxic and genetic rodent models of PD‐related neurodegeneration. In addition, PD‐linked mutations and post‐translational modifications of α‐synuclein impair its own lysosomal‐mediated degradation, thereby contributing to its accumulation and aggregation. Furthermore, other PD‐related genes, such as leucine‐rich repeat kinase‐2 (LRRK2), parkin, and phosphatase and tensin homolog (PTEN)‐induced putative kinase 1 (PINK1), have been mechanistically linked to alterations in ALPs. Conversely, mutations in lysosomal‐related genes, such as glucocerebrosidase (GBA) and lysosomal type 5 P‐type ATPase (ATP13A2), have been linked to PD. New data offer mechanistic molecular evidence for such a connection, unraveling a causal link between lysosomal impairment, α‐synuclein accumulation, and neurotoxicity. First, PD‐related GBA deficiency/mutations initiate a positive feedback loop in which reduced lysosomal function leads to α‐synuclein accumulation, which, in turn, further decreases lysosomal GBA activity by impairing the trafficking of GBA from the endoplasmic reticulum‐Golgi to lysosomes, leading to neurodegeneration. Second, PD‐related mutations/deficiency in the ATP13A2 gene lead to a general lysosomal impairment characterized by lysosomal membrane instability, impaired lysosomal acidification, decreased processing of lysosomal enzymes, reduced degradation of lysosomal substrates, and diminished clearance of autophagosomes, collectively contributing to α‐synuclein accumulation and cell death. According to these new findings, primary lysosomal defects could potentially account for Lewy body formation and neurodegeneration in PD, laying the groundwork for the prospective development of new neuroprotective/disease‐modifying therapeutic strategies aimed at restoring lysosomal levels and function.


Journal of Cell Science | 2007

Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age

Roberta Kiffin; Susmita Kaushik; Mei Zeng; Urmi Bandyopadhyay; Cong Zhang; Ashish C. Massey; Marta Martinez-Vicente; Ana Maria Cuervo

Rates of autophagy, the mechanism responsible for lysosomal clearance of cellular components, decrease with age. We have previously described an age-related decline in chaperone-mediated autophagy (CMA), a selective form of autophagy, by which particular cytosolic proteins are delivered to lysosomes after binding to the lysosome-associated membrane protein type 2A (LAMP-2A), a receptor for this pathway. Rates of CMA decrease with age because of a decrease in the levels of LAMP-2A. In this work we have investigated the reasons for the reduced levels of LAMP-2A with age. While transcriptional rates of LAMP-2A remain unchanged with age, the dynamics and stability of the receptor in the lysosomal compartment are altered. The mobilization of the lysosomal lumenal LAMP-2A to the membrane when CMA is activated is altered in lysosomes from old animals, leading to the presence of an unstable pool of lumenal LAMP-2A. By contrast, the regulated cleavage of LAMP-2A at the lysosomal membrane is reduced owing to altered association of the receptor and the protease responsible for its cleavage to particular membrane microdomain regions. We conclude that age-related changes at the lysosomal membrane are responsible for the altered turnover of the CMA receptor in old organisms and the consequent decline in this pathway.

Collaboration


Dive into the Marta Martinez-Vicente's collaboration.

Top Co-Authors

Avatar

Ana Maria Cuervo

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Susmita Kaushik

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Miquel Vila

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashish C. Massey

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Guy Sovak

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Laura García-Prat

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge