Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana María Hernández-Barranco is active.

Publication


Featured researches published by Ana María Hernández-Barranco.


Applied and Environmental Microbiology | 2008

Exopolysaccharides Produced by Intestinal Bifidobacterium Strains Act as Fermentable Substrates for Human Intestinal Bacteria

Nuria Salazar; Miguel Gueimonde; Ana María Hernández-Barranco; Patricia Ruas-Madiedo; Clara G. de los Reyes-Gavilán

This work was financially supported by European Union FEDER founds and by the Spanish Ministry of Education and Science (MEC) under projects AGL2004-06088-C02- 01/ALI and AGL2007-62736. M. Gueimonde was the recipient of a Juan de la Cierva postdoctoral contract from MEC and N. Salazar acknowledges the same institution for her predoctoral fellowship (FPI program).ABSTRACT Eleven exopolysaccharides (EPS) isolated from different human intestinal Bifidobacterium strains were tested in fecal slurry batch cultures and compared with glucose and the prebiotic inulin for their abilities to act as fermentable substrates for intestinal bacteria. During incubation, the increases in levels of short-chain fatty acids (SCFA) were considerably more pronounced in cultures with EPS, glucose, and inulin than in controls without carbohydrates added, indicating that the substrates assayed were fermented by intestinal bacteria. Shifts in molar proportions of SCFA during incubation with EPS and inulin caused a decrease in the acetic acid-to-propionic acid ratio, a possible indicator of the hypolipidemic effect of prebiotics, with the lowest values for this parameter being obtained for EPS from the species Bifidobacterium longum and from Bifidobacterium pseudocatenulatum strain C52. This behavior was contrary to that found with glucose, a carbohydrate not considered to be a prebiotic and for which a clear increase of this ratio was obtained during incubation. Quantitative real-time PCR showed that EPS exerted a moderate bifidogenic effect, which was comparable to that of inulin for some polymers but which was lower than that found for glucose. PCR-denaturing gradient gel electrophoresis of 16S rRNA gene fragments using universal primers was employed to analyze microbial groups other than bifidobacteria. Changes in banding patterns during incubation with EPS indicated microbial rearrangements of Bacteroides and Escherichia coli relatives. Moreover, the use of EPS from B. pseudocatenulatum in fecal cultures from some individuals accounted for the prevalence of Desulfovibrio and Faecalibacterium prausnitzii, whereas incubation with EPS from B. longum supported populations close to Anaerostipes, Prevotella, and/or Oscillospira. Thus, EPS synthesized by intestinal bifidobacteria could act as fermentable substrates for microorganisms in the human gut environment, modifying interactions among intestinal populations.


Archive | 2008

Bifidobacterium exopolysaccharides fermented by human microbiota

Nuria Salazar; Miguel Gueimonde Fernández; Ana María Hernández-Barranco; Patricia Ruas-Madiedo; Clara González de los Reyes-Gavilán

This work was financially supported by European Union FEDER founds and by the Spanish Ministry of Education and Science (MEC) under projects AGL2004-06088-C02- 01/ALI and AGL2007-62736. M. Gueimonde was the recipient of a Juan de la Cierva postdoctoral contract from MEC and N. Salazar acknowledges the same institution for her predoctoral fellowship (FPI program).ABSTRACT Eleven exopolysaccharides (EPS) isolated from different human intestinal Bifidobacterium strains were tested in fecal slurry batch cultures and compared with glucose and the prebiotic inulin for their abilities to act as fermentable substrates for intestinal bacteria. During incubation, the increases in levels of short-chain fatty acids (SCFA) were considerably more pronounced in cultures with EPS, glucose, and inulin than in controls without carbohydrates added, indicating that the substrates assayed were fermented by intestinal bacteria. Shifts in molar proportions of SCFA during incubation with EPS and inulin caused a decrease in the acetic acid-to-propionic acid ratio, a possible indicator of the hypolipidemic effect of prebiotics, with the lowest values for this parameter being obtained for EPS from the species Bifidobacterium longum and from Bifidobacterium pseudocatenulatum strain C52. This behavior was contrary to that found with glucose, a carbohydrate not considered to be a prebiotic and for which a clear increase of this ratio was obtained during incubation. Quantitative real-time PCR showed that EPS exerted a moderate bifidogenic effect, which was comparable to that of inulin for some polymers but which was lower than that found for glucose. PCR-denaturing gradient gel electrophoresis of 16S rRNA gene fragments using universal primers was employed to analyze microbial groups other than bifidobacteria. Changes in banding patterns during incubation with EPS indicated microbial rearrangements of Bacteroides and Escherichia coli relatives. Moreover, the use of EPS from B. pseudocatenulatum in fecal cultures from some individuals accounted for the prevalence of Desulfovibrio and Faecalibacterium prausnitzii, whereas incubation with EPS from B. longum supported populations close to Anaerostipes, Prevotella, and/or Oscillospira. Thus, EPS synthesized by intestinal bifidobacteria could act as fermentable substrates for microorganisms in the human gut environment, modifying interactions among intestinal populations.


Applied and Environmental Microbiology | 2005

A Bile Salt-Resistant Derivative of Bifidobacterium animalis Has an Altered Fermentation Pattern When Grown on Glucose and Maltose

Patricia Ruas-Madiedo; Ana María Hernández-Barranco; Abelardo Margolles; Clara G. de los Reyes-Gavilán

ABSTRACT The growth of Bifidobacterium animalis subsp. lactis IPLA 4549 and its derivative with acquired resistance to bile, B. animalis subsp. lactis 4549dOx, was evaluated in batch cultures with glucose or the glucose disaccharide maltose as the main carbon source. The acquisition of bile salt resistance caused a change in growth pattern for both sugars, which mainly resulted in a preferential use of maltose compared to glucose, whereas the mother strain used both carbohydrates in a similar way. High-performance liquid chromatography and gas chromatography-mass spectrometry analyses were performed to determine the amounts of glucose consumption and organic acid and ethanol formation from glucose by buffered resting cells taken at different points during growth. Resting cells of the bile-adapted strain generally consumed less glucose than those of the nonadapted one but showed an enhanced production of ethanol and higher acetic acid-to-lactic acid as well as formic acid-to-lactic acid ratios. These findings suggest a shift in the catabolism of carbohydrates promoted by the acquisition of bile resistance that may cause changes in the redox potential and improvements in the cellular ATP yield.


International Journal of Molecular Sciences | 2016

Impact of Prematurity and Perinatal Antibiotics on the Developing Intestinal Microbiota: A Functional Inference Study

Silvia Arboleya; Borja Sánchez; Gonzalo Solís; Nuria Fernández; Marta Suárez; Ana María Hernández-Barranco; Christian Milani; Abelardo Margolles; Clara G. de los Reyes-Gavilán; Marco Ventura; Miguel Gueimonde

Background: The microbial colonization of the neonatal gut provides a critical stimulus for normal maturation and development. This process of early microbiota establishment, known to be affected by several factors, constitutes an important determinant for later health. Methods: We studied the establishment of the microbiota in preterm and full-term infants and the impact of perinatal antibiotics upon this process in premature babies. To this end, 16S rRNA gene sequence-based microbiota assessment was performed at phylum level and functional inference analyses were conducted. Moreover, the levels of the main intestinal microbial metabolites, the short-chain fatty acids (SCFA) acetate, propionate and butyrate, were measured by Gas-Chromatography Flame ionization/Mass spectrometry detection. Results: Prematurity affects microbiota composition at phylum level, leading to increases of Proteobacteria and reduction of other intestinal microorganisms. Perinatal antibiotic use further affected the microbiota of the preterm infant. These changes involved a concomitant alteration in the levels of intestinal SCFA. Moreover, functional inference analyses allowed for identifying metabolic pathways potentially affected by prematurity and perinatal antibiotics use. Conclusion: A deficiency or delay in the establishment of normal microbiota function seems to be present in preterm infants. Perinatal antibiotic use, such as intrapartum prophylaxis, affected the early life microbiota establishment in preterm newborns, which may have consequences for later health.


Applied and Environmental Microbiology | 2013

Interactions between Bifidobacterium and Bacteroides Species in Cofermentations Are Affected by Carbon Sources, Including Exopolysaccharides Produced by Bifidobacteria

David Rios-Covian; Silvia Arboleya; Ana María Hernández-Barranco; Jorge R. Álvarez-Buylla; Patricia Ruas-Madiedo; Miguel Gueimonde; Clara G. de los Reyes-Gavilán

ABSTRACT Cocultures of strains from two Bifidobacterium and two Bacteroides species were performed with exopolysaccharides (EPS) previously purified from bifidobacteria, with inulin, or with glucose as the carbon source. Bifidobacterium longum NB667 and Bifidobacterium breve IPLA20004 grew in glucose but showed poor or no growth in complex carbohydrates (inulin, EPS E44, and EPS R1), whereas Bacteroides grew well in the four carbon sources tested. In the presence of glucose, the growth of Bacteroides thetaiotaomicron DSM-2079 was inhibited by B. breve, whereas it remained unaffected in the presence of B. longum. Ba. fragilis DSM-2151 contributed to a greater survival of B. longum, promoting changes in the synthesis of short-chain fatty acids (SCFA) and organic acids in coculture with respect to monocultures. In complex carbohydrates, cocultures of bifidobacterium strains with Ba. thetaiotaomicron did not modify the behavior of Bacteroides nor improve the poor growth of bifidobacteria. The metabolic activity of Ba. fragilis in coculture with bifidobacteria was not affected by EPS, but greater survival of bifidobacteria at late stages of incubation occurred in cocultures than in monocultures, leading to a higher production of acetic acid than in monocultures. Therefore, cocultures of Bifidobacterium and Bacteroides can behave differently against fermentable carbohydrates as a function of the specific characteristics of the strains from each species. These results stress the importance of considering specific species and strain interactions and not simply higher taxonomic divisions in the relationship among intestinal microbial populations and their different responses to probiotics and prebiotics.


Anaerobe | 2013

Assessment of intestinal microbiota modulation ability of Bifidobacterium strains in in vitro fecal batch cultures from preterm neonates.

Silvia Arboleya; Nuria Salazar; Gonzalo Solís; Nuria Fernández; Ana María Hernández-Barranco; Isabel Cuesta; Miguel Gueimonde; Clara G. de los Reyes-Gavilán

Microbial colonization of the infant gut is essential for the development of the intestine and the immune system. The intestinal microbiota of full-term breast-fed infants is considered as the health standard for newborns. A culture medium containing formula milk was designed, which allowed a balanced growth of intestinal microorganisms and was used to perform fecal batch cultures from preterm babies. Sixteen Bifidobacterium strains and fructooligosaccharides (FOS) were tested for their ability to modulate in vitro the intestinal microbiota. The production of short chain fatty acids (SCFA) was measured by Gas Chromatography and the levels of some anaerobe (Bifidobacterium and Bacteroides groups) and facultative anaerobes (Enterobacteriaceae, Enterococcaceae, Weissella group, and Klebsiella pneumoniae) were determined by quantitative PCR. Results were referred to a fecal negative control culture without microorganisms or FOS added. Strains that in fecal cultures counteracted better the aberrancies previously found in feces of preterm babies, as compared with full-term breast-fed infants, were selected. The three Bifidobacterium bifidum strains tested in this work promoted the most suitable shifts in SCFA and in the ratio of variables facultative anaerobes to anaerobes. Two Bifidobacterium breve strains complied with the requirement for facultative anaerobes and anaerobes and one of them also promoted a suitable shift of SCFA. Bifidobacteria behaved similarly as FOS regarding the microbial profiles in fecal cultures but the production of lactic and acetic acid was much lower. B. breve and B. bifidum strains selected represent promising candidates for their assessment in more complex in vitro and in vivo models.


Frontiers in Microbiology | 2016

Effect of Bifidobacterium upon Clostridium difficile Growth and Toxicity When Co-cultured in Different Prebiotic Substrates

Lorena Valdés-Varela; Ana María Hernández-Barranco; Patricia Ruas-Madiedo; Miguel Gueimonde

The intestinal overgrowth of Clostridium difficile, often after disturbance of the gut microbiota by antibiotic treatment, leads to C. difficile infection (CDI) which manifestation ranges from mild diarrhea to life-threatening conditions. The increasing CDI incidence, not only in compromised subjects but also in traditionally considered low-risk populations, together with the frequent relapses of the disease, has attracted the interest for prevention/therapeutic options. Among these, probiotics, prebiotics, or synbiotics constitute a promising approach. In this study we determined the potential of selected Bifidobacterium strains for the inhibition of C. difficile growth and toxicity in different carbon sources. We conducted co-cultures of the toxigenic strain C. difficile LMG21717 with four Bifidobacterium strains (Bifidobacterium longum IPLA20022, Bifidobacterium breve IPLA20006, Bifidobacterium bifidum IPLA20015, and Bifidobacterium animalis subsp. lactis Bb12) in the presence of various prebiotic substrates (Inulin, Synergy, and Actilight) or glucose, and compared the results with those obtained for the corresponding mono-cultures. C. difficile and bifidobacteria levels were quantified by qPCR; the pH and the production of short chain fatty acids was also determined. Moreover, supernatants of the cultures were collected to evaluate their toxicity using a recently developed model. Results showed that co-culture with B. longum IPLA20022 and B. breve IPLA20006 in the presence of short-chain fructooligosaccharides, but not of Inulin, as carbon source significantly reduced the growth of the pathogen. With the sole exception of B. animalis Bb12, whose growth was enhanced, the presence of C. difficile did not show major effects upon the growth of the bifidobacteria. In accordance with the growth data, B. longum and B. breve were the strains showing higher reduction in the toxicity of the co-culture supernatants.


International Journal of Dairy Technology | 2016

Characterisation of the technological behaviour of mixtures of mesophilic lactic acid bacteria isolated from traditional cheeses made of raw milk without added starters

Angel Alegría; Pablo J. González; Susana Delgado; Ana Belén Flórez; Ana María Hernández-Barranco; Ana Rodríguez; Baltasar Mayo

In this work, the technological behaviour in milk of a set of Lactococcus lactis strains, alone or in combination with strains of Leuconostoc spp. and Lactobacillus spp. isolated from traditional, raw milk cheeses made without commercial starters, was investigated. Small, mixture-specific differences during milk fermentation were recorded for growth, milk acidification and production of organic acids, volatile compounds, free amino acids and biogenic amines. Four combinations appropriate for use as dairy starters were tested in pilot-scale cheese trials. Two mixtures produced cheeses of high flavour and taste quality; these could be confidently used as starter cultures.


Beneficial Microbes | 2016

Glucolytic fingerprinting reveals metabolic groups within the genus Bifidobacterium: an exploratory study.

David Rios-Covian; Borja Sánchez; Isabel Cuesta; S. Cueto-Díaz; Ana María Hernández-Barranco; Miguel Gueimonde; C.G. de los Reyes-Gavilán

Microorganisms of the genus Bifidobacterium are inhabitants of diverse niches including the digestive tract of humans and animals. The species Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium breve and Bifidobacterium longum have qualified presumption of safety status granted by EFSA and several strains are considered probiotic, and are being included in functional dairy fermented products. In the present work we carried out a preliminary exploration of general metabolic characteristics and organic acid production profiles of a reduced number of strains selected from these and other species of the genus Bifidobacterium. The use of resting cells allowed obtaining metabolic fingerprints without interference of metabolites accumulated during growth in culture media. Acetic acid was the most abundant organic acid formed per mol of glucose consumed (from 1.07 ± 0.03 to 1.71 ± 0.22 mol) followed by lactic acid (from 0.34 ± 0.06 to 0.90 ± 0.12 mol), with moderate differences in production among strains; pyruvic, succinic and formic acids were also produced at considerably lower proportions, with variability among strains. The acetic to lactic acid ratio showed lower values in stationary phase as regard to the exponential phase for most, but not all, the microorganisms; this was due to a decrease in acetic acid molar proportions together with increases of lactic acid proportions in stationary phase. A linear discriminant analysis allowed to cluster strains into species with 51-100% probability, evidencing different metabolic profiles, according to the relative production of organic acids from glucose by resting cells, of microorganisms collected at the exponential phase of growth. Looking for a single metabolic marker that could adequately discriminate metabolic groups, we found that groups established by the acetic to lactic acid ratio fit well with differences previously evidenced by the discriminant analysis. The proper establishment of metabolic groups within the genus Bifidobacterium could help to select the best suited probiotic strains for specific applications.


Canadian Journal of Microbiology | 2016

A proteomic approach towards understanding the cross talk between Bacteroides fragilis and Bifidobacterium longum in coculture

David Rios-Covian; Borja Sánchez; Noelia Martínez; Isabel Cuesta; Ana María Hernández-Barranco; Clara G. de los Reyes-Gavilán; Miguel Gueimonde

A better understanding of the interactions among intestinal microbes is needed to decipher the complex cross talk that takes place within the human gut. Bacteroides and Bifidobacterium genera are among the most relevant intestinal bacteria, and it has been previously reported that coculturing of these 2 microorganisms affects their survival. Therefore, coculturing of Bifidobacterium longum NB667 and Bacteroides fragilis DSMZ2151 was performed with the aim of unravelling the mechanisms involved in their interaction. To this end, we applied proteomic (2D-DIGE) analyses, and by chromatographic techniques we quantified the bacterial metabolites produced during coincubation. Coculture stimulated the growth of B. longum, retarding that of B. fragilis, with concomitant changes in the production of some proteins and metabolites of both bacteria. The combined culture promoted upregulation of the bifidobacterial pyruvate kinase and downregulation of the Bacteroides phosphoenolpyruvate carboxykinase - 2 enzymes involved in the catabolism of carbohydrates. Moreover, B. fragilis FKBP-type peptidyl-prolyl cis-trans isomerase, a protein with chaperone-like activity, was found to be overproduced in coculture, suggesting the induction of a stress response in this microorganism. This study provides mechanistic data to deepen our understanding of the interaction between Bacteroides and Bifidobacterium intestinal populations.

Collaboration


Dive into the Ana María Hernández-Barranco's collaboration.

Top Co-Authors

Avatar

Miguel Gueimonde

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nuria Salazar

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gonzalo Solís

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Nuria Fernández

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Patricia Ruas-Madiedo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

David Rios-Covian

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Isabel Cuesta

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Abelardo Margolles

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge