Ana Maria Lottenberg
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Maria Lottenberg.
Journal of Nutritional Biochemistry | 2012
Ana Maria Lottenberg; Milessa da Silva Afonso; Maria Silvia Ferrari Lavrador; Roberta Marcondes Machado; Edna R. Nakandakare
Dysfunctional lipid metabolism is a key component in the development of metabolic syndrome, a very frequent condition characterized by dyslipidemia, insulin resistance, abdominal obesity and hypertension, which are related to an elevated risk for type 2 diabetes mellitus. The prevalence of metabolic syndrome is strongly associated with the severity of obesity; its physiopathology is related to both genetics and food intake habits, especially the consumption of a high-caloric, high-fat and high-carbohydrate diet. With the progress of scientific knowledge in the field of nutrigenomics, it was possible to elucidate how the majority of dietary fatty acids influence plasma lipid metabolism and also the genes expression involved in lipolysis and lipogenesis within hepatocytes and adipocytes. The aim of this review is to examine the relevant mechanistic aspects of dietary fatty acids related to blood lipids, adipose tissue metabolism, hepatic fat storage and inflammatory process, all of them closely related to the genesis of metabolic syndrome.
Journal of Nutrition | 2010
Roberta Marcondes Machado; J.T. Stefano; Claudia P. Oliveira; Evandro Sobroza de Mello; Fabiana Dias Ferreira; V.S. Nunes; Vicência Mara Rodrigues de Lima; Eder C.R. Quintão; Sergio Catanozi; Edna R. Nakandakare; Ana Maria Lottenberg
We investigated the effects of dietary trans fatty acids, PUFA, and SFA on body and liver fat content, liver histology, and mRNA of enzymes involved in fatty acid metabolism. LDL receptor knockout weaning male mice were fed for 16 wk with diets containing 40% energy as either trans fatty acids (TRANS), PUFA, or SFA. Afterwards, subcutaneous and epididymal fat were weighed and histological markers of nonalcoholic fatty liver disease (NAFLD) were assessed according to the Histological Scoring System for NAFLD. PPARalpha, PPARgamma, microsomal triglyceride transfer protein (MTP), carnitine palmitoyl transferase 1 (CPT-1), and sterol regulatory element binding protein-1c (SREBP-1c) mRNA were measured by quantitative RT-PCR. Food intake was similar in the 3 groups, although mice fed the TRANS diet gained less weight than those receiving the PUFA diet. Compared with the PUFA- and SFA-fed mice, TRANS-fed mice had greater plasma total cholesterol (TC) and triglyceride (TG) concentrations, less epididymal and subcutaneous fat, larger livers with nonalcoholic steatohepatitis (NASH)-like lesions, and greater liver TC and TG concentrations. Macrosteatosis in TRANS-fed mice was associated with a higher homeostasis model assessment of insulin resistance (HOMA(IR)) index and upregulated mRNA related to hepatic fatty acid synthesis (SREBP-1c and PPARgamma) and to downregulated MTP mRNA. Diet consumption did not alter hepatic mRNA related to fatty acid oxidation (PPARalpha and CPT-1). In conclusion, compared with PUFA- and SFA-fed mice, TRANS-fed mice had less adiposity, impaired glucose tolerance characterized by greater HOMA(IR) index, and NASH-like lesions due to greater hepatic lipogenesis. These results demonstrate the role of trans fatty acid intake on the development of key features of metabolic syndrome.
Nutrition & Metabolism | 2013
Milessa da Silva Afonso; Ana Mara de Oliveira e Silva; Eliane Bonifácio Teixeira de Carvalho; Diogo Pineda Rivelli; Silvia Berlanga de Moraes Barros; Marcelo Macedo Rogero; Ana Maria Lottenberg; Rosangela Pavan Torres; Jorge Mancini-Filho
BackgroundPhenolic compounds combine antioxidant and hypocholesterolemic activities and, consequently, are expected to prevent or minimize cardiometabolic risk.MethodsTo evaluate the effect of an aqueous extract (AQ) and non-esterified phenolic fraction (NEPF) from rosemary on oxidative stress in diet-induced hypercholesterolemia, 48 male 4-week old Wistar rats were divided into 6 groups: 1 chow diet group (C) and 5 hypercholesterolemic diet groups, with 1 receiving water (HC), 2 receiving AQ at concentrations of 7 and 140 mg/kg body weight (AQ70 and AQ140, respectively), and 2 receiving NEPF at concentrations of 7 and 14 mg/kg body weight (NEPF7 and NEPF14, respectively) by gavage for 4 weeks.ResultsIn vitro, both AQ and NEPF had remarkable antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH●) assay, which was similar to BHT. In vivo, the group that received AQ at 70 mg/kg body weight had lower serum total cholesterol (−39.8%), non-HDL-c (−44.4%) and thiobarbituric acid reactive substance (TBARS) levels (−37.7%) compared with the HC group. NEPF (7 and 14 mg/kg) reduced the tissue TBARS levels and increased the activity of tissular antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase). Neither AQ nor NEPF was able to ameliorate the alterations in the hypercholesterolemic diet-induced fatty acid composition in the liver.ConclusionsThese data suggest that phenolic compounds from rosemary ameliorate the antioxidant defense in different tissues and attenuate oxidative stress in diet-induced hypercholesterolemic rats, whereas the serum lipid profile was improved only in rats that received the aqueous extract.
Atherosclerosis | 1996
Simão Augusto Lottenberg; Ana Maria Lottenberg; V.S. Nunes; Ruth McPherson; Eder C.R. Quintão
Rates of ester formation from [3H]cholesterol and of [3H]cholesteryl ester transfer from the HDL-containing plasma fraction to lipoproteins of lighter densities (apo B-containing LP) and plasma cholesteryl ester transfer protein concentration (CETP) were measured in normotriglyceridemic Type II diabetics (n = 11) and normal controls (n = 10) both in the fasting state and 4 h after a standard milk-shake test meal (50g of fat/m of body surface). The percent of [3H]cholesteryl ester synthesis was measured in a plasma [3H]cholesterol-HDL containing preparation incubated for 30 min and the [3H]cholesteryl ester transfer was measured upon precipitation of apo B-containing lipoproteins with dextran sulphate/MgCl2 following a 2 h period of plasma incubation with [3H]cholesteryl ester-HDL. The test meal significantly increased the plasma triglyceride concentration and to a similar extent in diabetics and in normal controls. Both a HDL-[3H]cholesteryl ester synthesis and transfer rates were equally stimulated in diabetics and in controls. When data were expressed by the concentration of plasma triglycerides, cholesteryl ester formation and transfer rates were similar in the alimentary and fasting periods, and when expressed per apo B concentration, cholesteryl ester transfer rates rose during the alimentary period in both diabetics and controls indicating that there was a net gain of cholesteryl ester per apo B lipoprotein. Plasma CETP mass, and neutral lipid transfer activity were similar in diabetics and normal controls demonstrating that the reverse transport of cholesterol through the apo B lipoprotein pathway is not altered in normotriglyceridemic Type II diabetics.
Atherosclerosis | 2008
Edna R. Nakandakare; Ana M. Charf; Flávia C. Santos; V.S. Nunes; Katia Coelho Ortega; Ana Maria Lottenberg; Décio Mion; Katsuyuki Nakajima; Elbio A. D’Amico; Sergio Catanozi; Marisa Passarelli; Eder C.R. Quintão
BACKGROUND Dietary salt restriction has been reported to adversely modify the plasma lipoprotein profile in hypertensive and in normotensive subjects. We investigated the effects of the low sodium intake (LSI) on the plasma lipoprotein profile and on inflammation and thrombosis biomarkers during the fasting and postprandial periods. METHODS Non-obese, non-treated hypertensive adults (n=41) were fed strictly controlled diets. An initial week on a control diet (CD, Na=160 mmol/day) was followed by 3 weeks on LSI (Na=60 mmol/day). At admission and on the last day of each period, the 24-h ambulatory blood pressure was monitored and blood was drawn after an overnight fasting period and after a fat-rich test meal. RESULTS The dietary adherence was confirmed by 24-h urinary sodium excretion. Fasting triglyceride (TG), chylomicron-cholesterol, hsC-reactive protein (CRP), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) concentrations, renin activity, aldosterone, insulin, and homeostasis model assessment insulin resistance (HOMA-IR) values were higher, but non-esterified fatty acids (NEFA) were lower on LSI than on CD. For LSI, areas under the curve (AUC) of TG, chylomicron-cholesterol, apoB and the cholesterol/apoB ratio were increased, whereas AUC-NEFA was lowered. LSI did not modify body weight, hematocrit, fasting plasma cholesterol, glucose, adiponectin, leptin, fibrinogen and factor VII (FVII), and AUC of lipoprotein lipase and of lipoprotein remnants. CONCLUSION LSI induced alterations in the plasma lipoproteins and in inflammatory markers that are common features of the metabolic syndrome.
Atherosclerosis | 2012
Roberta Marcondes Machado; Edna R. Nakandakare; Eder C.R. Quintão; P.M. Cazita; Marcia K. Koike; V.S. Nunes; Fabiana Dias Ferreira; Milessa da Silva Afonso; Renata P.A. Bombo; Adriana Machado-Lima; Francisco Garcia Soriano; Sergio Catanozi; Ana Maria Lottenberg
The development of atherosclerosis and the inflammatory response were investigated in LDLr-KO mice on three high-fat diets (40% energy as fat) for 16 weeks: trans (TRANS), saturated (SAFA) or ω-6 polyunsaturated (PUFA) fats. The following parameters were measured: plasma lipids, aortic root total cholesterol (TC), lesion area (Oil Red-O), ABCA1 content and macrophage infiltration (immunohistochemistry), collagen content (Picrosirius-red) and co-localization of ABCA1 and macrophage (confocal microscopy) besides the plasma inflammatory markers (IL-6, TNF-α) and the macrophage inflammatory response to lipopolysaccharide from Escherichia coli (LPS). As expected, plasma TC and TG concentrations were lower on the PUFA diet than on TRANS or SAFA diets. Aortic intima macrophage infiltration, ABCA1 content, and lesion area on PUFA group were lower compared to TRANS and SAFA groups. Macrophages and ABCA1 markers did not co-localize in the atherosclerotic plaque, suggesting that different cell types were responsible for the ABCA1 expression in plaques. Compared to PUFA, TRANS and SAFA presented higher collagen content and necrotic cores in atherosclerotic plaques. In the artery wall, TC was lower on PUFA compared to TRANS group; free cholesterol was lower on PUFA compared to TRANS and SAFA; cholesteryl ester concentration did not vary amongst the groups. Plasma TNF-α concentration on PUFA and TRANS-fed mice was higher compared to SAFA. No difference was observed in IL-6 concentration amongst groups. Regarding the macrophage inflammatory response to LPS, TRANS and PUFA presented higher culture medium concentrations of IL-6 and TNF-α as compared to SAFA. The PUFA group showed the lowest amount of the anti-inflammatory marker IL-10 compared to TRANS and SAFA groups. In conclusion, PUFA intake prevented atherogenesis, even in a pro-inflammatory condition.
Arquivos Brasileiros De Endocrinologia E Metabologia | 2009
Ana Maria Lottenberg
The World Health Organization (WHO) has recently reinforced the fact that inadequate diets, along with physical inactivity, are among the ten main determinant factors of mortality. Several randomized trials demonstrated that dietary interventions may lower or even prevent the occurrence of several non-communicable diseases. In this context, the role of diet has been exhaustively evaluated in several clinical and epidemiological studies. Thus, it is well established in literature that the amount and type of dietary fat have a direct influence on cardiovascular risk factors, such as lipids and plasma lipoprotein concentration, as well as their association with inflammatory processes. Fatty acids also participate in complex intracellular signaling systems, a function which has been currently investigated. Dietary polyunsaturated fatty acids (PUFA) act not only by altering membrane lipid composition, cellular metabolism and signal transduction, but also modulating gene expression by regulating the activity and/or production of different nuclear transcription factors. The aim of this article is to review important topics regarding the lipids metabolism and correlate them with nutritional therapies that may contribute to the prevention and treatment of related diseases.
Lipids | 1992
Ana Maria Lottenberg; Helena C.F. Oliveira; Edna R. Nakandakare; Eder C.R. Quintão
The mechanism by which ω3 fatty acids lower plasma triacylglycerol levels was investigated. Rats were fed fish oil, olive oil (10% fat by weight) or a nonpurified diet 4% fat by weight) for 15 days. Lipoprotein lipase was inhibited by intra-arterial administration of Triton WR 1339 to estimate hepatic triacylglycerol output. Rats fed the olive oil diet showed a higher rate of triacylglycerol formation than rats fed the ω3 fatty acid diet or the low-fat diet. All three groups showed identical rates of removal from plasma of intraarterially administered artificial chylomicrons that had simultaneously been labeled with cholesteryl [1-14C]oleate and [9,10(n)-3H]triolein. Liver radioactivity and total fat content were lowest in rats fed the fish oil diet, indicating that ω3 fatty acids were preferentially metabolized in liver. Chylomicrons obtained from donor rats fed either fish oil containg [14C]cholesterol or olive oil containing [3H]cholesterol were removed at similar rates when infused together intraarterially into recipient animals. A slower formation of plasma very low density lipoprotein triacylglycerols in rats fed fish oil is probably due to a faster rate of oxidation of the fatty acid chains in the liver resulting in decreased plasma triacylglycerol concentrations.
Atherosclerosis | 1996
Ana Maria Lottenberg; V.S. Nunes; Simão Augusto Lottenberg; A.F.M. Shimabukuro; A.J.F. Carrilho; Sandra Malagutti; Edna R. Nakandakare; Ruth McPherson; Eder C.R. Quintão
Hypercholesterolemic women (n = 19) sequentially maintained on a long-term saturated (SAT) or a polyunsaturated (PUFA) fatty acid-rich diet, respectively, were studied in the fasting state and after a meal rich in SAT or PUFA. When apo B-containing lipoprotein was excluded from plasma the in vitro HDL-14C-cholesterol esterification rate was identical for the saturated (SAT) and polyunsaturated (PUFA) fatty acid diets, and did not increase during the postprandial period. Rates of transfer of 14C-cholesteryl ester to apo B-containing lipoproteins from HDL were also similar for both diets in the fasting state and increased to the same extent in the postprandial period in parallel with the rise in plasma triglycerides. When transfer data were related to the plasma concentration of apo B, the gain of cholesteryl ester by the triglyceride-containing particles (VLDL + LDL) also increased in the postprandial period to a similar extent for both diets. Cholesteryl ester transfer protein (CETP) concentration measured by radioimmunoassay was similar during both experimental diets, although greater in the postprandial period for the PUFA diet. The rate limiting factor for CETP-mediated transfer of HDL-derived cholesteryl ester (CE) was the plasma triglyceride concentration, that is, the content of triglycerides per lipoprotein particle and the quantity of TG-containing particles (VLDL + LDL). In contrast, the fatty acid composition of these particles had less effect on CETP-mediated CE transfer.
Arquivos Brasileiros De Cardiologia | 2002
Ana Maria Lottenberg; V.S. Nunes; Edna R. Nakandakare; Mônica Neves; Marcia M.S. Bernik; José Ernesto dos Santos; Eder C.R. Quintão
OBJECTIVE - This study aimed at relating the pattern of response to dietary plant sterol ester (PSE) treatment of plasma lipids concentrations and apo E polymorphisms. METHODS - Patients (20-60y old: 50 women; 10 men) with primary moderate hypercholesterolemia were fed margarine (20g/d), received no treatment (placebo), and were fed PSE (2.8g/d = 1.68 phytosterols), during 3 periods of 4 weeks each, in a crossover, double-blind study. DNA was extracted from white blood cells for the apo E polymorphisms. RESULTS - PSE treatment significantly lowered TC and LDL-C 10% and 12%, respectively, in relation to the baseline, and 6% and 8% in relation to the placebo phase, but HDL-C and TG levels were not modified. In regard to the apo E genotyping, no significant difference occurred between apo E 3/3 and apo E 3/4. CONCLUSION - Dietary plant sterol ester (PSE) treatment reduced cholesterolemia, and the reduction of LDL-C in absolute values was more pronounced when the initial LDL - C concentration were elevated.