Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergio Catanozi is active.

Publication


Featured researches published by Sergio Catanozi.


Journal of Nutrition | 2010

Intake of trans Fatty Acids Causes Nonalcoholic Steatohepatitis and Reduces Adipose Tissue Fat Content

Roberta Marcondes Machado; J.T. Stefano; Claudia P. Oliveira; Evandro Sobroza de Mello; Fabiana Dias Ferreira; V.S. Nunes; Vicência Mara Rodrigues de Lima; Eder C.R. Quintão; Sergio Catanozi; Edna R. Nakandakare; Ana Maria Lottenberg

We investigated the effects of dietary trans fatty acids, PUFA, and SFA on body and liver fat content, liver histology, and mRNA of enzymes involved in fatty acid metabolism. LDL receptor knockout weaning male mice were fed for 16 wk with diets containing 40% energy as either trans fatty acids (TRANS), PUFA, or SFA. Afterwards, subcutaneous and epididymal fat were weighed and histological markers of nonalcoholic fatty liver disease (NAFLD) were assessed according to the Histological Scoring System for NAFLD. PPARalpha, PPARgamma, microsomal triglyceride transfer protein (MTP), carnitine palmitoyl transferase 1 (CPT-1), and sterol regulatory element binding protein-1c (SREBP-1c) mRNA were measured by quantitative RT-PCR. Food intake was similar in the 3 groups, although mice fed the TRANS diet gained less weight than those receiving the PUFA diet. Compared with the PUFA- and SFA-fed mice, TRANS-fed mice had greater plasma total cholesterol (TC) and triglyceride (TG) concentrations, less epididymal and subcutaneous fat, larger livers with nonalcoholic steatohepatitis (NASH)-like lesions, and greater liver TC and TG concentrations. Macrosteatosis in TRANS-fed mice was associated with a higher homeostasis model assessment of insulin resistance (HOMA(IR)) index and upregulated mRNA related to hepatic fatty acid synthesis (SREBP-1c and PPARgamma) and to downregulated MTP mRNA. Diet consumption did not alter hepatic mRNA related to fatty acid oxidation (PPARalpha and CPT-1). In conclusion, compared with PUFA- and SFA-fed mice, TRANS-fed mice had less adiposity, impaired glucose tolerance characterized by greater HOMA(IR) index, and NASH-like lesions due to greater hepatic lipogenesis. These results demonstrate the role of trans fatty acid intake on the development of key features of metabolic syndrome.


Atherosclerosis | 2009

Air pollution and antibodies against modified lipoproteins are associated with atherosclerosis and vascular remodeling in hyperlipemic mice

Sandra Regina Castro Soares; Regiani Carvalho-Oliveira; Eduardo Milton Ramos-Sanchez; Sergio Catanozi; Luiz Fernando da Silva; Thais Mauad; Magnus Gidlund; Hiro Goto; Maria Lúcia Bueno Garcia

We analyzed the impact of chronic exposure to urban air pollution on the development of atherosclerosis. Hyperlipemic mice (LDLR(-/-)) were submitted to a high fat diet and air pollution for four months. We measured the susceptibility of LDL to oxidative modifications (TBARS), the presence of anti-oxLDL and an apoB-derived peptide (apoB-D) in blood and the degree of atherosclerosis in the aortic arch. Air pollution increased the susceptibility of LDL to oxidation as well as anti-oxLDL and anti-apo-B levels. These levels were even higher than in mice submitted to a high fat diet and non-polluted air. The lipid content of the atherosclerotic plaques in the aorta was increased in groups with a high cholesterol diet independently of the air quality. However, the thickness of the arterial wall was greater in mice fed a high lipid diet with polluted air. Thus, we conclude that urban air pollution exacerbates the susceptibility of LDL to oxidation, atherogenesis and vascular remodeling in hyperlipemic mice and that an immune response accompanies this process.


Diabetologia | 1997

Plasma lipoproteins from patients with poorly controlled diabetes mellitus and “in vitro” glycation of lipoproteins enhance the transfer rate of cholesteryl ester from HDL to apo-B-containing lipoproteins

Marisa Passarelli; Sergio Catanozi; Edna R. Nakandakare; J.C. Rocha; R. E. Morton; A.F.M. Shimabukuro; E.C.R. Quintão

Summary Alterations in the reverse cholesterol transport system have been described in diabetic mellitus patients in several but not all studies. Furthermore, recently published investigations suggest that a faster “in vitro” transfer rate of cholesteryl ester from high density lipoproteins to apoB-containing lipoproteins could be solely ascribed to variation of the plasma lipoprotein composition and concentration in the diabetic state. The present study analysed the influence of lipoprotein glycation on the cholesteryl ester transfer protein-mediated transfer of esterified cholesterol from high density lipoprotein and its subfractions to lighter density lipoproteins. For this purpose two sets of “in vitro” experiments were carried out utilizing:1) plasma lipoproteins drawn from diabetic and from normal subjects and; 2) normal lipoproteins or partially purified cholesteryl ester transfer protein submitted to “in vitro” glycation. The transfer rate of 14C-cholesteryl ester labelled HDL subfractions to low or very low density lipoproteins was measured in all experiments. After incubations with plasma d > 1.21 g/ml or with purified cholesteryl ester transfer protein, apoB-containing lipoproteins were precipitated with a dextran sulfate/MgCl2 solution. The “in vitro” glycation of the partially purified cholesteryl ester transfer protein markedly impaired its activity. However, greater transfer rates were observed when lipoproteins from diabetic individuals or the “in vitro” glycated lipoproteins were utilized. This effect was attributed to glycation of the protein component of HDL. In conclusion, lipoprotein glycation elicits an enrichment of the apoB-containing lipoproteins with cholesteryl ester that is likely related to the premature atherosclerosis in patients with poorly controlled diabetes. [Diabetologia (1997) 40: 1085–1093]


Journal of Endocrinology | 2009

A TRβ-selective agonist confers resistance to diet-induced obesity

Beatriz S Amorim; Cintia B. Ueta; Beatriz C G Freitas; Renata J Nassif; Cecilia H. A. Gouveia; Marcelo A. Christoffolete; Anselmo S. Moriscot; Carmen Lucia Lancelloti; Flávia Llimona; Hermes Vieira Barbeiro; Heraldo Possolo de Souza; Sergio Catanozi; Marisa Passarelli; Marcelo Saldanha Aoki; Antonio C. Bianco; Miriam O. Ribeiro

Thyroid hormone receptor beta (TRbeta also listed as THRB on the MGI Database)-selective agonists activate brown adipose tissue (BAT) thermogenesis, while only minimally affecting cardiac activity or lean body mass. Here, we tested the hypothesis that daily administration of the TRbeta agonist GC-24 prevents the metabolic alterations associated with a hypercaloric diet. Rats were placed on a high-fat diet and after a month exhibited increased body weight (BW) and adiposity, fasting hyperglycemia and glucose intolerance, increased plasma levels of triglycerides, cholesterol, nonesterified fatty acids and interleukin-6. While GC-24 administration to these animals did not affect food ingestion or modified the progression of BW gain, it did increase energy expenditure, eliminating the increase in adiposity without causing cardiac hypertrophy. Fasting hyperglycemia remained unchanged, but treatment with GC-24 improved glucose tolerance by increasing insulin sensitivity, and also normalized plasma triglyceride levels. Plasma cholesterol levels were only partially normalized and liver cholesterol content remained high in the GC-24-treated animals. Gene expression in liver, skeletal muscle, and white adipose tissue was only minimally affected by treatment with GC-24, with the main target being BAT. In conclusion, during high-fat feeding treatment with the TRbeta-selective agonist, GC-24 only partially improves metabolic control probably as a result of accelerating the resting metabolic rate.


Atherosclerosis | 2008

Dietary salt restriction increases plasma lipoprotein and inflammatory marker concentrations in hypertensive patients

Edna R. Nakandakare; Ana M. Charf; Flávia C. Santos; V.S. Nunes; Katia Coelho Ortega; Ana Maria Lottenberg; Décio Mion; Katsuyuki Nakajima; Elbio A. D’Amico; Sergio Catanozi; Marisa Passarelli; Eder C.R. Quintão

BACKGROUND Dietary salt restriction has been reported to adversely modify the plasma lipoprotein profile in hypertensive and in normotensive subjects. We investigated the effects of the low sodium intake (LSI) on the plasma lipoprotein profile and on inflammation and thrombosis biomarkers during the fasting and postprandial periods. METHODS Non-obese, non-treated hypertensive adults (n=41) were fed strictly controlled diets. An initial week on a control diet (CD, Na=160 mmol/day) was followed by 3 weeks on LSI (Na=60 mmol/day). At admission and on the last day of each period, the 24-h ambulatory blood pressure was monitored and blood was drawn after an overnight fasting period and after a fat-rich test meal. RESULTS The dietary adherence was confirmed by 24-h urinary sodium excretion. Fasting triglyceride (TG), chylomicron-cholesterol, hsC-reactive protein (CRP), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) concentrations, renin activity, aldosterone, insulin, and homeostasis model assessment insulin resistance (HOMA-IR) values were higher, but non-esterified fatty acids (NEFA) were lower on LSI than on CD. For LSI, areas under the curve (AUC) of TG, chylomicron-cholesterol, apoB and the cholesterol/apoB ratio were increased, whereas AUC-NEFA was lowered. LSI did not modify body weight, hematocrit, fasting plasma cholesterol, glucose, adiponectin, leptin, fibrinogen and factor VII (FVII), and AUC of lipoprotein lipase and of lipoprotein remnants. CONCLUSION LSI induced alterations in the plasma lipoproteins and in inflammatory markers that are common features of the metabolic syndrome.


Pediatric Research | 2004

Perinatal Salt Restriction: A New Pathway to Programming Insulin Resistance and Dyslipidemia in Adult Wistar Rats

Armando Ferreira Vidonho; Alexandre Ataide da Silva; Sergio Catanozi; J.C. Rocha; Abram Beutel; Bruno A. Carillo; Luzia Naoko Shinohara Furukawa; Cassia Toledo Bergamaschi; Angelo R Carpinelli; Eder C.R. Quintão; Miriam Sterman Dolnikoff; Joel Claudio Heimann

Several studies support the hypothesis that chronic diseases in adulthood might be triggered by events that occur during fetal development. This study examined the consequences of perinatal salt intake on blood pressure (BP) and carbohydrate and lipid metabolism in adult offspring of dams on high-salt [HSD; 8% (HSD2) or 4% (HSD1)], normal-salt (NSD; 1.3%), or low-salt (LSD; 0.15% NaCl) diet during pregnancy and lactation. At 12 wk of age, female Wistar rats were matched with adult male rats that were fed NSD. Weekly tail-cuff BP measurements were performed before, during, and after pregnancy. After weaning, the offspring received only NSD and were housed in metabolic cages for 24-h urine collection for sodium and potassium and nitrate and nitrite excretion measurements. At 12 wk of age, intra-arterial mean BP was measured, a euglycemic-hyperinsulinemic clamp was performed, and plasma lipids and nitrate and nitrite concentrations were determined. Tail-cuff BP was higher during pregnancy in HSD2 and HSD1 than in NSD and LSD dams. Mean BP (mm Hg) was also higher in the offspring of HSD2 (110 ± 5) and HSD1 (107 ± 5) compared with NSD (100 ± 2) and LSD (92 ± 2). Lower glucose uptake and higher plasma cholesterol and triacylglycerols were observed in male offspring from LSD dams (glucose uptake: HSD2 17 ± 4, HSD1 15 ± 3, NSD 11 ± 3, LSD 4 ± 1 mg · kg−1 · min−1; cholesterol: HSD2 62 ± 6, HSD1 82 ± 11, NSD 68 ± 10, LSD 98 ± 17 mg/dL; triacylglycerols: HSD2 47 ± 15, HSD1 49 ± 12, NSD 56 ± 19, LSD 83 ± 11 mg/dL). In conclusion, maternal salt intake during pregnancy and lactation has long-term influences on arterial pressure, insulin sensitivity, and plasma lipids of the adult offspring.


Atherosclerosis | 2012

Omega-6 polyunsaturated fatty acids prevent atherosclerosis development in LDLr-KO mice, in spite of displaying a pro-inflammatory profile similar to trans fatty acids

Roberta Marcondes Machado; Edna R. Nakandakare; Eder C.R. Quintão; P.M. Cazita; Marcia K. Koike; V.S. Nunes; Fabiana Dias Ferreira; Milessa da Silva Afonso; Renata P.A. Bombo; Adriana Machado-Lima; Francisco Garcia Soriano; Sergio Catanozi; Ana Maria Lottenberg

The development of atherosclerosis and the inflammatory response were investigated in LDLr-KO mice on three high-fat diets (40% energy as fat) for 16 weeks: trans (TRANS), saturated (SAFA) or ω-6 polyunsaturated (PUFA) fats. The following parameters were measured: plasma lipids, aortic root total cholesterol (TC), lesion area (Oil Red-O), ABCA1 content and macrophage infiltration (immunohistochemistry), collagen content (Picrosirius-red) and co-localization of ABCA1 and macrophage (confocal microscopy) besides the plasma inflammatory markers (IL-6, TNF-α) and the macrophage inflammatory response to lipopolysaccharide from Escherichia coli (LPS). As expected, plasma TC and TG concentrations were lower on the PUFA diet than on TRANS or SAFA diets. Aortic intima macrophage infiltration, ABCA1 content, and lesion area on PUFA group were lower compared to TRANS and SAFA groups. Macrophages and ABCA1 markers did not co-localize in the atherosclerotic plaque, suggesting that different cell types were responsible for the ABCA1 expression in plaques. Compared to PUFA, TRANS and SAFA presented higher collagen content and necrotic cores in atherosclerotic plaques. In the artery wall, TC was lower on PUFA compared to TRANS group; free cholesterol was lower on PUFA compared to TRANS and SAFA; cholesteryl ester concentration did not vary amongst the groups. Plasma TNF-α concentration on PUFA and TRANS-fed mice was higher compared to SAFA. No difference was observed in IL-6 concentration amongst groups. Regarding the macrophage inflammatory response to LPS, TRANS and PUFA presented higher culture medium concentrations of IL-6 and TNF-α as compared to SAFA. The PUFA group showed the lowest amount of the anti-inflammatory marker IL-10 compared to TRANS and SAFA groups. In conclusion, PUFA intake prevented atherogenesis, even in a pro-inflammatory condition.


Nephrology Dialysis Transplantation | 2013

Thalidomide suppresses inflammation in adenine-induced CKD with uraemia in mice

Alexandre C. Santana; Sabrina Degaspari; Sergio Catanozi; Humberto Dellê; Larissa de Sá Lima; Cleonice Giovanini Alves da Silva; Paula L. Blanco; Kim Solez; Cristoforo Scavone; Irene L. Noronha

BACKGROUND Persistent systemic inflammation has been widely recognized in patients with chronic kidney disease (CKD), and is associated with increased risk of morbidity and mortality. Intervention therapies aiming for the blockade of inflammatory cytokines are considered attractive approaches for CKD patients with signs of chronic inflammation. In this context, thalidomide, due to its potent anti-inflammatory and immunomodulatory properties, may represent an alternative strategy of treatment. In the present study, we developed an experimental model of CKD with uraemia in mice, induced by a diet rich in adenine, which causes progressive renal dysfunction, resembling the human uraemic features. Inflammatory parameters were analysed in this model of CKD and the potential beneficial effects of thalidomide as an anti-inflammatory drug was also investigated. METHODS C57/BL-6 mice were fed with an adenine-containing diet during a period of 6 weeks. Thirty mice were divided into three groups: Control group (animals receiving normal diet), ADE group (mice receiving adenine-containing diet) and ADE + TLD group (CKD mice receiving thalidomide, 30 mg/kg/day, by gavage). Besides biochemical and histopathological changes, local and systemic inflammatory parameters were also analysed, including expression of cytokines interleukin (IL)-1β, tumour necrosis factor-α, IL-6, IL-4 and IL-10 in kidney samples by real-time RT-PCR and quantification of serum levels of cytokines. Finally, the electrophoretic mobility shift assay (EMSA) for NF-κB was also examined. RESULTS Adenine-fed mice developed advanced CKD characterized by a marked increase in serum urea, creatinine, phosphorus and intact parathyroid hormone (iPTH) levels. In addition, histological changes of tubulointerstitial injury, characterized by deposition of crystals in the kidney, accompanied by tubular dilatation, degeneration of proximal tubular epithelium with loss of the brush border, inflammatory cellular infiltration, foreign-body granuloma formation and interstitial fibrosis were also evident. By immunohistochemistry, Mac-2- and α-SMA-positive cells were identified in the tubulointerstitial compartment. Treatment with thalidomide significantly reduced serum urea, creatinine, phosphorus and iPTH levels and protected against tubulointerstitial injury. Local and systemic inflammation in the mice model of adenine-induced CKD was confirmed by the findings of significantly high expression of cytokine mRNA levels and NF-κB activation in the kidney tissue as well as marked increased serum levels of inflammatory cytokines. Thalidomide treatment significantly reduced gene expression of these cytokines and the activation of the NF-κB in the renal tissue and the circulating levels of cytokines. CONCLUSIONS Dietary adenine caused advanced CKD with uraemia in mice providing a useful experimental model to study molecular and morphological changes associated with this disease. The negative impact of inflammation in this CKD model was overcome by the marked anti-inflammatory effects of thalidomide, promoting renal protection.


Clinica Chimica Acta | 2000

Diminished rate of mouse peritoneal macrophage cholesterol efflux is not related to the degree of HDL glycation in diabetes mellitus

Marisa Passarelli; A.F.M. Shimabukuro; Sergio Catanozi; Edna R. Nakandakare; J.C. Rocha; A.J.F. Carrilho; Eder C.R. Quintão

The efflux of (14)C-cholesterol from mouse peritoneal macrophages mediated by in vivo and in vitro glycation of intact HDL(3) and by HDL(3) apolipoproteins was investigated. Cholesterol-laden cells were incubated a long time with HDL(3) from control subjects (C), poorly controlled diabetes mellitus patients (D) and with HDL C submitted to in vitro glycation (G), as well as with all their respectively isolated apolipoproteins. A diminished cholesterol efflux rate occurred in incubations with intact HDL(3) D but not with intact HDL(3)G or with apoHDL(3)C, G or D. The specific binding of (125)I-HDL(3)G to the cell receptor, obtained upon incubation in the absence and in the presence of excess unlabelled HDL(3), was lower than the control. The role of apoE secretion by cholesterol-laden macrophages on cholesterol efflux was analyzed by incubating apoE knockout and control mice macrophages with HDL C or HDL G: a lower cholesterol efflux was observed from apoE knockout macrophages but glycation of HDL(3) did not influence this process either. The diminished capacity to remove cholesterol by the HDL drawn from diabetic subjects must be attributed to other modifications of the lipoproteins, except for non enzymatic glycation. Thus, events that impair the cell cholesterol removal in diabetes mellitus are multifaceted.


Atherosclerosis | 2001

The rise of the plasma lipid concentration elicited by dietary sodium chloride restriction in Wistar rats is due to an impairment of the plasma triacylglycerol removal rate

Sergio Catanozi; J.C. Rocha; Edna R. Nakandakare; Marisa Passarelli; Carlos H. Mesquita; Alexandre Ataide da Silva; Miriam S. Dolnikoff; L.M. Harada; Eder C.R. Quintão; Joel Claudio Heimann

Studies in humans have indicated that dietary salt restriction raises plasma levels of total cholesterol (TC) and triacylglycerols (TAG). In order to explain the mechanisms involved, a rat experimental model was developed consisting of chronic feeding ad libitum isocaloric diets with variable sodium chloride contents. Rates of synthesis of plasma TAG were measured either as the increase of plasma TAG after blocking its removal from plasma by the intra-arterial pulse infusion of Triton-WR 1339, or as the plasma rate of incorporation of [(14)C]-oleic acid [(14)C]-TAG. Plasma TAG removal rate was determined by the intra-arterial pulse infusion of a lipid emulsion. Severe salt restriction increased the plasma concentrations of TAG (71%) and of TC (10%). This result was not due to modification of the rate of synthesis of plasma TAG but was attributed to a 55% slower rate of removal of the TAG-containing lipoproteins. An increased plasma non-esterified fatty acid concentration, probably due to a salt restriction-related insulin resistance, may have impaired the activity of the enzyme lipoprotein lipase.

Collaboration


Dive into the Sergio Catanozi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V.S. Nunes

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.C. Rocha

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge